The Arabidopsis basic leucine zipper transcription factor AtbZIP24 regulates complex transcriptional networks involved in abiotic stress resistance

Yang O, Popova OV, Suethoff U, Lueking I, Dietz K-J, Golldack D (2009)
GENE 436(1-2): 45-55.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Yang, Oksoon; Popova, Olga V.; Suethoff, Ulrike; Lueking, Ines; Dietz, Karl-JosefUniBi; Golldack, DortjeUniBi
Abstract / Bemerkung
Soil salinity severely affects plant growth and agricultural productivity. AtbZIP24 encodes a bZIP transcription factor that is induced by salt stress in Ambidopsis thaliana but suppressed in the salt-tolerant relative Lobularia maritima. Transcriptional repression of AtbZIP24 using RNA interference improved salt tolerance in A. thaliana. Under non-stress growth conditions, transgenic A. thaliana lines with decreased AtbZIP24 expression activated the expression of stress-inducible genes involved in cytoplasmic ion homeostasis and osmotic adjustment: the Na+ transporter AtHKT1, the Na+/H+ antiporter AtSOS1, the aquaporin AtPIP2.1, and a glutamine synthetase. In addition, candidate target genes of AtbZIP24 with functions in plant growth and development were identified such as an argonaute (AGO1)-related protein and cyclophilin AtCYP19. The salt tolerance in transgenic plants correlated with reduced Na+ accumulation in leaves. In vivo interaction of AtbZIP24 as a homodimer was shown using fluorescence energy transfer (FRET) with cyan fluorescent protein (CFP) and yellow fluorescent protein (YFP) as fused FRET pairs. Translational fusion of AtbZIP24 with GFP showed subcellular localization of the protein in nucleus and cytoplasm in plants grown under control conditions whereas in response to salt stress AtbZIP24 was preferentially targeted to the nucleus. It is concluded that AtbZIP24 is an important regulator of salt stress response in plants. The modification of transcriptional control by regulatory transcription factors provides a useful strategy for improving salt tolerance in plants. (C) 2009 Elsevier B.V. All rights reserved.
Salt tolerance; Arabidopsis; RNAi; AtbZIP24; Transcription factor
Page URI


Yang O, Popova OV, Suethoff U, Lueking I, Dietz K-J, Golldack D. The Arabidopsis basic leucine zipper transcription factor AtbZIP24 regulates complex transcriptional networks involved in abiotic stress resistance. GENE. 2009;436(1-2):45-55.
Yang, O., Popova, O. V., Suethoff, U., Lueking, I., Dietz, K. - J., & Golldack, D. (2009). The Arabidopsis basic leucine zipper transcription factor AtbZIP24 regulates complex transcriptional networks involved in abiotic stress resistance. GENE, 436(1-2), 45-55.
Yang, Oksoon, Popova, Olga V., Suethoff, Ulrike, Lueking, Ines, Dietz, Karl-Josef, and Golldack, Dortje. 2009. “The Arabidopsis basic leucine zipper transcription factor AtbZIP24 regulates complex transcriptional networks involved in abiotic stress resistance”. GENE 436 (1-2): 45-55.
Yang, O., Popova, O. V., Suethoff, U., Lueking, I., Dietz, K. - J., and Golldack, D. (2009). The Arabidopsis basic leucine zipper transcription factor AtbZIP24 regulates complex transcriptional networks involved in abiotic stress resistance. GENE 436, 45-55.
Yang, O., et al., 2009. The Arabidopsis basic leucine zipper transcription factor AtbZIP24 regulates complex transcriptional networks involved in abiotic stress resistance. GENE, 436(1-2), p 45-55.
O. Yang, et al., “The Arabidopsis basic leucine zipper transcription factor AtbZIP24 regulates complex transcriptional networks involved in abiotic stress resistance”, GENE, vol. 436, 2009, pp. 45-55.
Yang, O., Popova, O.V., Suethoff, U., Lueking, I., Dietz, K.-J., Golldack, D.: The Arabidopsis basic leucine zipper transcription factor AtbZIP24 regulates complex transcriptional networks involved in abiotic stress resistance. GENE. 436, 45-55 (2009).
Yang, Oksoon, Popova, Olga V., Suethoff, Ulrike, Lueking, Ines, Dietz, Karl-Josef, and Golldack, Dortje. “The Arabidopsis basic leucine zipper transcription factor AtbZIP24 regulates complex transcriptional networks involved in abiotic stress resistance”. GENE 436.1-2 (2009): 45-55.

56 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Transcriptomic analysis of Aegilops tauschii during long-term salinity stress.
Mansouri M, Naghavi MR, Alizadeh H, Mohammadi-Nejad G, Mousavi SA, Salekdeh GH, Tada Y., Funct Integr Genomics 19(1), 2019
PMID: 29931612
NtMYB4 and NtCHS1 Are Critical Factors in the Regulation of Flavonoid Biosynthesis and Are Involved in Salinity Responsiveness.
Chen S, Wu F, Li Y, Qian Y, Pan X, Li F, Wang Y, Wu Z, Fu C, Lin H, Yang A., Front Plant Sci 10(), 2019
PMID: 30846995
Transcriptome analysis reveals regulatory framework for salt and osmotic tolerance in a succulent xerophyte.
Yin H, Li M, Li D, Khan SA, Hepworth SR, Wang SM., BMC Plant Biol 19(1), 2019
PMID: 30819118
Genome-wide transcriptional adaptation to salt stress in Populus.
Liu JG, Han X, Yang T, Cui WH, Wu AM, Fu CX, Wang BC, Liu LJ., BMC Plant Biol 19(1), 2019
PMID: 31429697
The Arabidopsis bZIP19 and bZIP23 Activity Requires Zinc Deficiency - Insight on Regulation From Complementation Lines.
Lilay GH, Castro PH, Campilho A, Assunção AGL., Front Plant Sci 9(), 2018
PMID: 30723487
Basic leucine zipper transcription factor SlbZIP1 mediates salt and drought stress tolerance in tomato.
Zhu M, Meng X, Cai J, Li G, Dong T, Li Z., BMC Plant Biol 18(1), 2018
PMID: 29739325
Overexpression of PeHKT1;1 Improves Salt Tolerance in Populus.
Xu M, Chen C, Cai H, Wu L., Genes (Basel) 9(10), 2018
PMID: 30274294
Phylogenetic analysis of F-bZIP transcription factors indicates conservation of the zinc deficiency response across land plants.
Castro PH, Lilay GH, Muñoz-Mérida A, Schjoerring JK, Azevedo H, Assunção AGL., Sci Rep 7(1), 2017
PMID: 28630437
RNA structure, binding, and coordination in Arabidopsis.
Foley SW, Kramer MC, Gregory BD., Wiley Interdiscip Rev RNA 8(5), 2017
PMID: 28660659
F-group bZIPs in barley-a role in Zn deficiency.
Nazri AZ, Griffin JHC, Peaston KA, Alexander-Webber DGA, Williams LE., Plant Cell Environ 40(11), 2017
PMID: 28763829
Genome-Wide Identification and Structural Analysis of bZIP Transcription Factor Genes in Brassica napus.
Zhou Y, Xu D, Jia L, Huang X, Ma G, Wang S, Zhu M, Zhang A, Guan M, Lu K, Xu X, Wang R, Li J, Qu C., Genes (Basel) 8(10), 2017
PMID: 29064393
SlbZIP38, a Tomato bZIP Family Gene Downregulated by Abscisic Acid, Is a Negative Regulator of Drought and Salt Stress Tolerance.
Pan Y, Hu X, Li C, Xu X, Su C, Li J, Song H, Zhang X, Pan Y., Genes (Basel) 8(12), 2017
PMID: 29261143
Transcriptomic Analysis of Soil-Grown Arabidopsis thaliana Roots and Shoots in Response to a Drought Stress.
Rasheed S, Bashir K, Matsui A, Tanaka M, Seki M., Front Plant Sci 7(), 2016
PMID: 26941754
A Ramie bZIP Transcription Factor BnbZIP2 Is Involved in Drought, Salt, and Heavy Metal Stress Response.
Huang C, Zhou J, Jie Y, Xing H, Zhong Y, Yu W, She W, Ma Y, Liu Z, Zhang Y., DNA Cell Biol 35(12), 2016
PMID: 27845851
HKT transporters mediate salt stress resistance in plants: from structure and function to the field.
Hamamoto S, Horie T, Hauser F, Deinlein U, Schroeder JI, Uozumi N., Curr Opin Biotechnol 32(), 2015
PMID: 25528276
A novel wheat bZIP transcription factor, TabZIP60, confers multiple abiotic stress tolerances in transgenic Arabidopsis
Zhang L, Zhang L, Xia C, Zhao G, Liu J, Jia J, Kong X., Physiol Plant 153(4), 2015
PMID: IND601259792
Comprehensive analysis of transcriptome response to salinity stress in the halophytic turf grass Sporobolus virginicus.
Yamamoto N, Takano T, Tanaka K, Ishige T, Terashima S, Endo C, Kurusu T, Yajima S, Yano K, Tada Y., Front Plant Sci 6(), 2015
PMID: 25954282
Global Gene Expression of Kosteletzkya virginica Seedlings Responding to Salt Stress.
Tang X, Wang H, Shao C, Shao H., PLoS One 10(4), 2015
PMID: 25901608
Identification of novel drought-responsive microRNAs and trans-acting siRNAs from Sorghum bicolor (L.) Moench by high-throughput sequencing analysis.
Katiyar A, Smita S, Muthusamy SK, Chinnusamy V, Pandey DM, Bansal KC., Front Plant Sci 6(), 2015
PMID: 26236318
Aquaporins in Plants.
Maurel C, Boursiac Y, Luu DT, Santoni V, Shahzad Z, Verdoucq L., Physiol Rev 95(4), 2015
PMID: 26336033
Characterization of three Arabidopsis thaliana immunophilin genes involved in the plant defense response against Pseudomonas syringae.
Pogorelko GV, Mokryakova M, Fursova OV, Abdeeva I, Piruzian ES, Bruskin SA., Gene 538(1), 2014
PMID: 24440291
Plant salt-tolerance mechanisms.
Deinlein U, Stephan AB, Horie T, Luo W, Xu G, Schroeder JI., Trends Plant Sci 19(6), 2014
PMID: 24630845
Tolerance to drought and salt stress in plants: Unraveling the signaling networks.
Golldack D, Li C, Mohan H, Probst N., Front Plant Sci 5(), 2014
PMID: 24795738
Genome-wide analysis of the bZIP transcription factors in cucumber.
Baloglu MC, Eldem V, Hajyzadeh M, Unver T., PLoS One 9(4), 2014
PMID: 24760072
Subcellular protein overexpression to develop abiotic stress tolerant plants.
Nouri MZ, Komatsu S., Front Plant Sci 4(), 2013
PMID: 23346093
Structure, function and networks of transcription factors involved in abiotic stress responses.
Lindemose S, O'Shea C, Jensen MK, Skriver K., Int J Mol Sci 14(3), 2013
PMID: 23485989
Gibberellins and abscisic acid signal crosstalk: living and developing under unfavorable conditions.
Golldack D, Li C, Mohan H, Probst N., Plant Cell Rep 32(7), 2013
PMID: 23525744
Model of how plants sense zinc deficiency.
Assunção AG, Persson DP, Husted S, Schjørring JK, Alexander RD, Aarts MG., Metallomics 5(9), 2013
PMID: 23851954
Molecular cloning and characterization of a novel RING zinc-finger protein gene up-regulated under in vitro salt stress in cassava.
dos Reis SP, Tavares Lde S, Costa Cde N, Brígida AB, de Souza CR., Mol Biol Rep 39(6), 2012
PMID: 22307786
Recent molecular advances on downstream plant responses to abiotic stress.
Dos Reis SP, Lima AM, de Souza CR., Int J Mol Sci 13(7), 2012
PMID: 22942725
SpUSP, an annexin-interacting universal stress protein, enhances drought tolerance in tomato.
Loukehaich R, Wang T, Ouyang B, Ziaf K, Li H, Zhang J, Lu Y, Ye Z., J Exp Bot 63(15), 2012
PMID: 22915741
Comparative transcriptome analysis of two olive cultivars in response to NaCl-stress.
Bazakos C, Manioudaki ME, Therios I, Voyiatzis D, Kafetzopoulos D, Awada T, Kalaitzis P., PLoS One 7(8), 2012
PMID: 22952621
microRNAs associated with drought response in the bioenergy crop sugarcane (Saccharum spp.).
Ferreira TH, Gentile A, Vilela RD, Costa GG, Dias LI, Endres L, Menossi M., PLoS One 7(10), 2012
PMID: 23071617
Genome-wide expansion and expression divergence of the basic leucine zipper transcription factors in higher plants with an emphasis on sorghum.
Wang J, Zhou J, Zhang B, Vanitha J, Ramachandran S, Jiang SY., J Integr Plant Biol 53(3), 2011
PMID: 21205183
A novel zinc-finger-like gene from Tamarix hispida is involved in salt and osmotic tolerance.
An Y, Wang Y, Lou L, Zheng T, Qu GZ., J Plant Res 124(6), 2011
PMID: 21327695
Arabidopsis thaliana transcription factors bZIP19 and bZIP23 regulate the adaptation to zinc deficiency.
Assunção AG, Herrero E, Lin YF, Huettel B, Talukdar S, Smaczniak C, Immink RG, van Eldik M, Fiers M, Schat H, Aarts MG., Proc Natl Acad Sci U S A 107(22), 2010
PMID: 20479230
Regulation of the adaptation to zinc deficiency in plants.
Assunção AG, Schat H, Aarts MG., Plant Signal Behav 5(12), 2010
PMID: 21139426
UV-B-responsive microRNAs in Populus tremula.
Jia X, Ren L, Chen QJ, Li R, Tang G., J Plant Physiol 166(18), 2009
PMID: 19628301

56 References

Daten bereitgestellt von Europe PubMed Central.

Regulation of vegetative phase change in Arabidopsis thaliana by cyclophilin 40.
Berardini TZ, Bollman K, Sun H, Poethig RS., Science 291(5512), 2001
PMID: 11264535
Functional analysis of AtHKT1 in Arabidopsis shows that Na(+) recirculation by the phloem is crucial for salt tolerance.
Berthomieu P, Conejero G, Nublat A, Brackenbury WJ, Lambert C, Savio C, Uozumi N, Oiki S, Yamada K, Cellier F, Gosti F, Simonneau T, Essah PA, Tester M, Very AA, Sentenac H, Casse F., EMBO J. 22(9), 2003
PMID: 12727868
AGO1 defines a novel locus of Arabidopsis controlling leaf development.
Bohmert K, Camus I, Bellini C, Bouchez D, Caboche M, Benning C., EMBO J. 17(1), 1998
PMID: 9427751
The Arabidopsis thaliana ABSCISIC ACID-INSENSITIVE8 encodes a novel protein mediating abscisic acid and sugar responses essential for growth.
Brocard-Gifford I, Lynch TJ, Garcia ME, Malhotra B, Finkelstein RR., Plant Cell 16(2), 2004
PMID: 14742875
ABFs, a family of ABA-responsive element binding factors.
Choi H, Hong J, Ha J, Kang J, Kim SY., J. Biol. Chem. 275(3), 2000
PMID: 10636868
OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression.
Dubouzet JG, Sakuma Y, Ito Y, Kasuga M, Dubouzet EG, Miura S, Seki M, Shinozaki K, Yamaguchi-Shinozaki K., Plant J. 33(4), 2003
PMID: 12609047
Repression of shoot growth, a bZIP transcriptional activator, regulates cell elongation by controlling the level of gibberellins.
Fukazawa J, Sakai T, Ishida S, Yamaguchi I, Kamiya Y, Takahashi Y., Plant Cell 12(6), 2000
PMID: 10852936
Function, intracellular localization and the importance in salt tolerance of a vacuolar Na(+)/H(+) antiporter from rice.
Fukuda A, Nakamura A, Tagiri A, Tanaka H, Miyao A, Hirochika H, Tanaka Y., Plant Cell Physiol. 45(2), 2004
PMID: 14988485
Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses.
Garg AK, Kim JK, Owens TG, Ranwala AP, Choi YD, Kochian LV, Wu RJ., Proc. Natl. Acad. Sci. U.S.A. 99(25), 2002
PMID: 12456878
Drought- and salt-tolerant plants result from overexpression of the AVP1 H+-pump.
Gaxiola RA, Li J, Undurraga S, Dang LM, Allen GJ, Alper SL, Fink GR., Proc. Natl. Acad. Sci. U.S.A. 98(20), 2001
PMID: 11572991
Isolation and characterization of a Na+/H+ antiporter gene from the halophyte Atriplex gmelini.
Hamada A, Shono M, Xia T, Ohta M, Hayashi Y, Tanaka A, Hayakawa T., Plant Mol. Biol. 46(1), 2001
PMID: 11437248
Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ., Annu. Rev. Plant Physiol. Plant Mol. Biol. 51(), 2000
PMID: 15012199
bZIP transcription factors in Arabidopsis.
Jakoby M, Weisshaar B, Droge-Laser W, Vicente-Carbajosa J, Tiedemann J, Kroj T, Parcy F; bZIP Research Group., Trends Plant Sci. 7(3), 2002
PMID: 11906833
Modular cloning in plant cells.
Karimi M, De Meyer B, Hilson P., Trends Plant Sci. 10(3), 2005
PMID: 15749466
Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor.
Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K., Nat. Biotechnol. 17(3), 1999
PMID: 10096298
The role of ARGONAUTE1 (AGO1) in meristem formation and identity.
Kidner CA, Martienssen RA., Dev. Biol. 280(2), 2005
PMID: 15882589
A novel cold-inducible zinc finger protein from soybean, SCOF-1, enhances cold tolerance in transgenic plants.
Kim JC, Lee SH, Cheong YH, Yoo CM, Lee SI, Chun HJ, Yun DJ, Hong JC, Lee SY, Lim CO, Cho MJ., Plant J. 25(3), 2001
PMID: 11208017
Subcellular trafficking of the Arabidopsis auxin influx carrier AUX1 uses a novel pathway distinct from PIN1.
Kleine-Vehn J, Dhonukshe P, Swarup R, Bennett M, Friml J., Plant Cell 18(11), 2006
PMID: 17114355
Subcellular distribution of the V-ATPase complex in plant cells, and in vivo localisation of the 100 kDa subunit VHA-a within the complex.
Kluge C, Seidel T, Bolte S, Sharma SS, Hanitzsch M, Satiat-Jeunemaitre B, Ross J, Sauer M, Golldack D, Dietz KJ., BMC Cell Biol. 5(), 2004
PMID: 15310389
Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress.
Kreps JA, Wu Y, Chang HS, Zhu T, Wang X, Harper JF., Plant Physiol. 130(4), 2002
PMID: 12481097
The wheat peptidyl prolyl cis-trans-isomerase FKBP77 is heat induced and developmentally regulated.
Kurek I, Aviezer K, Erel N, Herman E, Breiman A., Plant Physiol. 119(2), 1999
PMID: 9952466
A role for HKT1 in sodium uptake by wheat roots.
Laurie S, Feeney KA, Maathuis FJ, Heard PJ, Brown SJ, Leigh RA., Plant J. 32(2), 2002
PMID: 12383080
The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance.
Liu J, Ishitani M, Halfter U, Kim CS, Zhu JK., Proc. Natl. Acad. Sci. U.S.A. 97(7), 2000
PMID: 10725382
MicroRNA maturation and action--the expanding roles of ARGONAUTEs.
Mallory AC, Elmayan T, Vaucheret H., Curr. Opin. Plant Biol. 11(5), 2008
PMID: 18691933
Mapping methyl jasmonate-mediated transcriptional reprogramming of metabolism and cell cycle progression in cultured Arabidopsis cells.
Pauwels L, Morreel K, De Witte E, Lammertyn F, Van Montagu M, Boerjan W, Inze D, Goossens A., Proc. Natl. Acad. Sci. U.S.A. 105(4), 2008
PMID: 18216250
Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3.
Qiu QS, Guo Y, Dietrich MA, Schumaker KS, Zhu JK., Proc. Natl. Acad. Sci. U.S.A. 99(12), 2002
PMID: 12034882
The Arabidopsis cyclophilin gene family.
Romano PG, Horton P, Gray JE., Plant Physiol. 134(4), 2004
PMID: 15051864
AtHKT1 facilitates Na+ homeostasis and K+ nutrition in planta.
Rus A, Lee BH, Munoz-Mayor A, Sharkhuu A, Miura K, Zhu JK, Bressan RA, Hasegawa PM., Plant Physiol. 136(1), 2004
PMID: 15347798
Arabidopsis Cys2/His2-type zinc-finger proteins function as transcription repressors under drought, cold, and high-salinity stress conditions.
Sakamoto H, Maruyama K, Sakuma Y, Meshi T, Iwabuchi M, Shinozaki K, Yamaguchi-Shinozaki K., Plant Physiol. 136(1), 2004
PMID: 15333755
Colocalization and FRET-analysis of subunits c and a of the vacuolar H+-ATPase in living plant cells.
Seidel T, Kluge C, Hanitzsch M, Ross J, Sauer M, Dietz KJ, Golldack D., J. Biotechnol. 112(1-2), 2004
PMID: 15288951
Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray.
Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, Kamiya A, Nakajima M, Enju A, Sakurai T, Satou M, Akiyama K, Taji T, Yamaguchi-Shinozaki K, Carninci P, Kawai J, Hayashizaki Y, Shinozaki K., Plant J. 31(3), 2002
PMID: 12164808
Ion homeostasis during salt stress in plants.
Serrano R, Rodriguez-Navarro A., Curr. Opin. Cell Biol. 13(4), 2001
PMID: 11454443
Increased Salt and Drought Tolerance by D-Ononitol Production in Transgenic Nicotiana tabacum L.
Sheveleva E, Chmara W, Bohnert HJ, Jensen RG., Plant Physiol. 115(3), 1997
PMID: 12223867
Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter.
Tran LS, Nakashima K, Sakuma Y, Simpson SD, Fujita Y, Maruyama K, Fujita M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K., Plant Cell 16(9), 2004
PMID: 15319476
Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions.
Uno Y, Furihata T, Abe H, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K., Proc. Natl. Acad. Sci. U.S.A. 97(21), 2000
PMID: 11005831
Structure of the guide-strand-containing argonaute silencing complex.
Wang Y, Sheng G, Juranek S, Tuschl T, Patel DJ., Nature 456(7219), 2008
PMID: 18754009
Combinatorial control of Arabidopsis proline dehydrogenase transcription by specific heterodimerisation of bZIP transcription factors.
Weltmeier F, Ehlert A, Mayer CS, Dietrich K, Wang X, Schutze K, Alonso R, Harter K, Vicente-Carbajosa J, Droge-Laser W., EMBO J. 25(13), 2006
PMID: 16810321
Repression of stress-responsive genes by FIERY2, a novel transcriptional regulator in Arabidopsis.
Xiong L, Lee H, Ishitani M, Tanaka Y, Stevenson B, Koiwa H, Bressan RA, Hasegawa PM, Zhu JK., Proc. Natl. Acad. Sci. U.S.A. 99(16), 2002
PMID: 12149453
Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit.
Zhang HX, Blumwald E., Nat. Biotechnol. 19(8), 2001
PMID: 11479571
Plant salt tolerance.
Zhu JK., Trends Plant Sci. 6(2), 2001
PMID: 11173290
A bZIP transcription factor, OsABI5, is involved in rice fertility and stress tolerance.
Zou M, Guan Y, Ren H, Zhang F, Chen F., Plant Mol. Biol. 66(6), 2008
PMID: 18236009

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

PMID: 19248824
PubMed | Europe PMC

Suchen in

Google Scholar