Identification of genes relevant to symbiosis and competitiveness in Sinorhizobium meliloti using signature-tagged mutants

Pobigaylo N, Szymczak S, Nattkemper TW, Becker A (2008)

Zeitschriftenaufsatz | Veröffentlicht | Englisch
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Pobigaylo, Nataliya; Szymczak, Silke; Nattkemper, Tim WilhelmUniBi ; Becker, Anke
Abstract / Bemerkung
Sinorhizobium meliloti enters an endosymbiosis with alfalfa plants through the formation of nitrogen-fixing nodules. In order to identify S. meliloti genes required for symbiosis and competitiveness, a method of signature-tagged mutagenesis was used. Two sets, each consisting of 378 signature-tagged mutants with a known transposon insertion site, were used in an experiment in planta. As a result, 67 mutants showing attenuated symbiotic phenotypes were identified, including most of the exo, fix, and nif mutants in the sets. For 38 mutants in genes previously not described to be involved in competitiveness or symbiosis in S. meliloti, attenuated competitiveness phenotypes were tested individually. A large part of these phenotypes was confirmed. Moreover, additional symbiotic defects were observed for mutants in several novel genes such as infection deficiency phenotypes (ilvI and ilvD2 mutants) or delayed nodulation (pyrE, metA, thiC, thiO, and thiD mutants).
Page URI


Pobigaylo N, Szymczak S, Nattkemper TW, Becker A. Identification of genes relevant to symbiosis and competitiveness in Sinorhizobium meliloti using signature-tagged mutants. MOLECULAR PLANT-MICROBE INTERACTIONS. 2008;21(2):219-231.
Pobigaylo, N., Szymczak, S., Nattkemper, T. W., & Becker, A. (2008). Identification of genes relevant to symbiosis and competitiveness in Sinorhizobium meliloti using signature-tagged mutants. MOLECULAR PLANT-MICROBE INTERACTIONS, 21(2), 219-231.
Pobigaylo, Nataliya, Szymczak, Silke, Nattkemper, Tim Wilhelm, and Becker, Anke. 2008. “Identification of genes relevant to symbiosis and competitiveness in Sinorhizobium meliloti using signature-tagged mutants”. MOLECULAR PLANT-MICROBE INTERACTIONS 21 (2): 219-231.
Pobigaylo, N., Szymczak, S., Nattkemper, T. W., and Becker, A. (2008). Identification of genes relevant to symbiosis and competitiveness in Sinorhizobium meliloti using signature-tagged mutants. MOLECULAR PLANT-MICROBE INTERACTIONS 21, 219-231.
Pobigaylo, N., et al., 2008. Identification of genes relevant to symbiosis and competitiveness in Sinorhizobium meliloti using signature-tagged mutants. MOLECULAR PLANT-MICROBE INTERACTIONS, 21(2), p 219-231.
N. Pobigaylo, et al., “Identification of genes relevant to symbiosis and competitiveness in Sinorhizobium meliloti using signature-tagged mutants”, MOLECULAR PLANT-MICROBE INTERACTIONS, vol. 21, 2008, pp. 219-231.
Pobigaylo, N., Szymczak, S., Nattkemper, T.W., Becker, A.: Identification of genes relevant to symbiosis and competitiveness in Sinorhizobium meliloti using signature-tagged mutants. MOLECULAR PLANT-MICROBE INTERACTIONS. 21, 219-231 (2008).
Pobigaylo, Nataliya, Szymczak, Silke, Nattkemper, Tim Wilhelm, and Becker, Anke. “Identification of genes relevant to symbiosis and competitiveness in Sinorhizobium meliloti using signature-tagged mutants”. MOLECULAR PLANT-MICROBE INTERACTIONS 21.2 (2008): 219-231.

32 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Specificity traits consistent with legume-rhizobia coevolution displayed by Ensifer meliloti rhizosphere colonization.
Salas ME, Lozano MJ, López JL, Draghi WO, Serrania J, Torres Tejerizo GA, Albicoro FJ, Nilsson JF, Pistorio M, Del Papa MF, Parisi G, Becker A, Lagares A., Environ Microbiol 19(9), 2017
PMID: 28618121
What makes rhizobia rhizosphere colonizers?
Rivilla R, Martín M, Lloret J., Environ Microbiol 19(11), 2017
PMID: 28892276
Construction and pilot screening of a signature-tagged mutant library of Sinorhizobium fredii.
Wang D, Wang YC, Wu LJ, Liu JX, Zhang P, Jiao J, Yan H, Liu T, Tian CF, Chen WX., Arch Microbiol 198(2), 2016
PMID: 26472206
Genomic resources for identification of the minimal N2 -fixing symbiotic genome.
diCenzo GC, Zamani M, Milunovic B, Finan TM., Environ Microbiol 18(8), 2016
PMID: 26768651
Arabinose and protocatechuate catabolism genes are important for growth of Rhizobium leguminosarum biovar viciae in the pea rhizosphere.
Garcia-Fraile P, Seaman JC, Karunakaran R, Edwards A, Poole PS, Downie JA., Plant Soil 390(1-2), 2015
PMID: 26166901
Stable Fluorescent and Enzymatic Tagging of Bradyrhizobium diazoefficiens to Analyze Host-Plant Infection and Colonization.
Ledermann R, Bartsch I, Remus-Emsermann MN, Vorholt JA, Fischer HM., Mol Plant Microbe Interact 28(9), 2015
PMID: 26035130
Host plant peptides elicit a transcriptional response to control the Sinorhizobium meliloti cell cycle during symbiosis.
Penterman J, Abo RP, De Nisco NJ, Arnold MF, Longhi R, Zanda M, Walker GC., Proc Natl Acad Sci U S A 111(9), 2014
PMID: 24501120
Mutation of praR in Rhizobium leguminosarum enhances root biofilms, improving nodulation competitiveness by increased expression of attachment proteins.
Frederix M, Edwards A, Swiderska A, Stanger A, Karunakaran R, Williams A, Abbruscato P, Sanchez-Contreras M, Poole PS, Downie JA., Mol Microbiol 93(3), 2014
PMID: 24942546
Control of NO level in rhizobium-legume root nodules: not only a plant globin story.
Meilhoc E, Blanquet P, Cam Y, Bruand C., Plant Signal Behav 8(10), 2013
PMID: 23962798
Biosynthesis of branched-chain amino acids is essential for effective symbioses between betarhizobia and Mimosa pudica.
Chen WM, Prell J, James EK, Sheu DS, Sheu SY., Microbiology 158(pt 7), 2012
PMID: 22556357
Nitric oxide (NO): a key player in the senescence of Medicago truncatula root nodules.
Cam Y, Pierre O, Boncompagni E, Hérouart D, Meilhoc E, Bruand C., New Phytol 196(2), 2012
PMID: 22937888
Identification of Mesorhizobium loti genes relevant to symbiosis by using signature-tagged mutants.
Borjigin N, Furukawa K, Shimoda Y, Tabata S, Sato S, Eda S, Minamisawa K, Mitsui H., Microbes Environ 26(2), 2011
PMID: 21502733
Nitric oxide is required for an optimal establishment of the Medicago truncatula-Sinorhizobium meliloti symbiosis.
del Giudice J, Cam Y, Damiani I, Fung-Chat F, Meilhoc E, Bruand C, Brouquisse R, Puppo A, Boscari A., New Phytol 191(2), 2011
PMID: 21457261
Osmotically induced synthesis of the dipeptide N-acetylglutaminylglutamine amide is mediated by a new pathway conserved among bacteria.
Sagot B, Gaysinski M, Mehiri M, Guigonis JM, Le Rudulier D, Alloing G., Proc Natl Acad Sci U S A 107(28), 2010
PMID: 20571117
The rkpU gene of Sinorhizobium fredii HH103 is required for bacterial K-antigen polysaccharide production and for efficient nodulation with soybean but not with cowpea.
Hidalgo A, Margaret I, Crespo-Rivas JC, Parada M, Murdoch Pdel S, López A, Buendía-Clavería AM, Moreno J, Albareda M, Gil-Serrano AM, Rodríguez-Carvajal MA, Palacios JM, Ruiz-Sainz JE, Vinardell JM., Microbiology 156(pt 11), 2010
PMID: 20688828
A portal for rhizobial genomes: RhizoGATE integrates a Sinorhizobium meliloti genome annotation update with postgenome data.
Becker A, Barnett MJ, Capela D, Dondrup M, Kamp PB, Krol E, Linke B, Rüberg S, Runte K, Schroeder BK, Weidner S, Yurgel SN, Batut J, Long SR, Pühler A, Goesmann A., J Biotechnol 140(1-2), 2009
PMID: 19103235
The Symbiosis Interactome: a computational approach reveals novel components, functional interactions and modules in Sinorhizobium meliloti.
Rodriguez-Llorente I, Caviedes MA, Dary M, Palomares AJ, Cánovas FM, Peregrín-Alvarez JM., BMC Syst Biol 3(), 2009
PMID: 19531251
The PhyR-sigma(EcfG) signalling cascade is involved in stress response and symbiotic efficiency in Bradyrhizobium japonicum.
Gourion B, Sulser S, Frunzke J, Francez-Charlot A, Stiefel P, Pessi G, Vorholt JA, Fischer HM., Mol Microbiol 73(2), 2009
PMID: 19555458
A Sinorhizobium meliloti osmosensory two-component system required for cyclic glucan export and symbiosis.
Griffitts JS, Carlyon RE, Erickson JH, Moulton JL, Barnett MJ, Toman CJ, Long SR., Mol Microbiol 69(2), 2008
PMID: 18630344
Construction of signature-tagged mutant library in Mesorhizobium loti as a powerful tool for functional genomics.
Shimoda Y, Mitsui H, Kamimatsuse H, Minamisawa K, Nishiyama E, Ohtsubo Y, Nagata Y, Tsuda M, Shinpo S, Watanabe A, Kohara M, Yamada M, Nakamura Y, Tabata S, Sato S., DNA Res 15(5), 2008
PMID: 18658183
Auxotrophy accounts for nodulation defect of most Sinorhizobium meliloti mutants in the branched-chain amino acid biosynthesis pathway.
de las Nieves Peltzer M, Roques N, Poinsot V, Aguilar OM, Batut J, Capela D., Mol Plant Microbe Interact 21(9), 2008
PMID: 18700827

70 References

Daten bereitgestellt von Europe PubMed Central.

Growth and nodulation competitiveness of Sinorhizobium meliloti L1 (RecA − ) is less than that of its isogenic strain L33 (RecA + ) but comparable to that of two S. meliloti  wild-type isolates
Niemann, Applied Microbiology and Biotechnology 47(5), 1997
The common nodABC genes of Rhizobium meliloti are host-range determinants.
Roche P, Maillet F, Plazanet C, Debelle F, Ferro M, Truchet G, Prome JC, Denarie J., Proc. Natl. Acad. Sci. U.S.A. 93(26), 1996
PMID: 8986807
Chronic intracellular infection of alfalfa nodules by Sinorhizobium meliloti requires correct lipopolysaccharide core.
Campbell GR, Reuhs BL, Walker GC., Proc. Natl. Acad. Sci. U.S.A. 99(6), 2002
PMID: 11904442
A dual-genome Symbiosis Chip for coordinate study of signal exchange and development in a prokaryote-host interaction.
Barnett MJ, Toman CJ, Fisher RF, Long SR., Proc. Natl. Acad. Sci. U.S.A. 101(47), 2004
PMID: 15542588
Early symbiotic responses induced by Sinorhizobium meliloti iIvC mutants in alfalfa.
Lopez JC, Grasso DH, Frugier F, Crespi MD, Aguilar OM., Mol. Plant Microbe Interact. 14(1), 2001
PMID: 11194871
A global analysis of protein expression profiles in Sinorhizobium meliloti: discovery of new genes for nodule occupancy and stress adaptation.
Djordjevic MA, Chen HC, Natera S, Van Noorden G, Menzel C, Taylor S, Renard C, Geiger O, Weiller GF; Sinorhizobium DNA Sequencing Consortium., Mol. Plant Microbe Interact. 16(6), 2003
PMID: 12795377
Global changes in gene expression in Sinorhizobium meliloti 1021 under microoxic and symbiotic conditions.
Becker A, Berges H, Krol E, Bruand C, Ruberg S, Capela D, Lauber E, Meilhoc E, Ampe F, de Bruijn FJ, Fourment J, Francez-Charlot A, Kahn D, Kuster H, Liebe C, Puhler A, Weidner S, Batut J., Mol. Plant Microbe Interact. 17(3), 2004
PMID: 15000396
Sinorhizobium meliloti differentiation during symbiosis with alfalfa: a transcriptomic dissection.
Capela D, Filipe C, Bobik C, Batut J, Bruand C., Mol. Plant Microbe Interact. 19(4), 2006
PMID: 16610739
Isolation and regulation of Sinorhizobium meliloti 1021 loci induced by oxygen limitation.
Trzebiatowski JR, Ragatz DM, de Bruijn FJ., Appl. Environ. Microbiol. 67(8), 2001
PMID: 11472955
The pha gene cluster of Rhizobium meliloti involved in pH adaptation and symbiosis encodes a novel type of K+ efflux system.
Putnoky P, Kereszt A, Nakamura T, Endre G, Grosskopf E, Kiss P, Kondorosi A., Mol. Microbiol. 28(6), 1998
PMID: 9680201
New insights into the ATP-dependent Clp protease: Escherichia coli and beyond.
Porankiewicz J, Wang J, Clarke AK., Mol. Microbiol. 32(3), 1999
PMID: 10320569
Localization of a symbiotic fix region on Rhizobium meliloti pSym megaplasmid more than 200 kilobases from the nod-nif region
Batut, MGG Molecular & General Genetics 199(2), 1985
Auxin: regulation, action, and interaction.
Woodward AW, Bartel B., Ann. Bot. 95(5), 2005
PMID: 15749753
Role of the K-Antigen Subgroup of Capsular Polysaccharides in the Early Recognition Process Between Rhizobium meliloti and Alfalfa Leaves
Becquart-de, Molecular Plant-Microbe Interactions 10(1), 1997
Expression and regulation of phosphate stress inducible genes in Sinorhizobium meliloti.
Summers ML, Elkins JG, Elliott BA, McDermott TR., Mol. Plant Microbe Interact. 11(11), 1998
PMID: 9805396
The Rhizobium etli trpB gene is essential for an effective symbiotic interaction with Phaseolus vulgaris.
Tate R, Riccio A, Caputo E, Cermola M, Favre R, Patriarca EJ., Mol. Plant Microbe Interact. 12(10), 1999
PMID: 10517032
Expression of nodule-specific genes in alfalfa root nodules blocked at an early stage of development.
Dickstein R, Bisseling T, Reinhold VN, Ausubel FM., Genes Dev. 2(6), 1988
PMID: 3417147
Simultaneous identification of bacterial virulence genes by negative selection.
Hensel M, Shea JE, Gleeson C, Jones MD, Dalton E, Holden DW., Science 269(5222), 1995
PMID: 7618105
A functional myo-inositol catabolism pathway is essential for rhizopine utilization by Sinorhizobium meliloti.
Galbraith MP, Feng SF, Borneman J, Triplett EW, de Bruijn FJ, Rossbach S., Microbiology (Reading, Engl.) 144 ( Pt 10)(), 1998
PMID: 9802033
An expanded view of bacterial DNA replication.
Noirot-Gros MF, Dervyn E, Wu LJ, Mervelet P, Errington J, Ehrlich SD, Noirot P., Proc. Natl. Acad. Sci. U.S.A. 99(12), 2002
PMID: 12060778
Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis.
Winzeler EA, Shoemaker DD, Astromoff A, Liang H, Anderson K, Andre B, Bangham R, Benito R, Boeke JD, Bussey H, Chu AM, Connelly C, Davis K, Dietrich F, Dow SW, El Bakkoury M, Foury F, Friend SH, Gentalen E, Giaever G, Hegemann JH, Jones T, Laub M, Liao H, Liebundguth N, Lockhart DJ, Lucau-Danila A, Lussier M, M'Rabet N, Menard P, Mittmann M, Pai C, Rebischung C, Revuelta JL, Riles L, Roberts CJ, Ross-MacDonald P, Scherens B, Snyder M, Sookhai-Mahadeo S, Storms RK, Veronneau S, Voet M, Volckaert G, Ward TR, Wysocki R, Yen GS, Yu K, Zimmermann K, Philippsen P, Johnston M, Davis RW., Science 285(5429), 1999
PMID: 10436161
Functional analysis of Sinorhizobium meliloti genes involved in biotin synthesis and transport.
Entcheva P, Phillips DA, Streit WR., Appl. Environ. Microbiol. 68(6), 2002
PMID: 12039741
A glutamine-amidotransferase-like protein modulates FixT anti-kinase activity in Sinorhizobium meliloti.
Berges H, Checroun C, Guiral S, Garnerone AM, Boistard P, Batut J., BMC Microbiol. 1(), 2001
PMID: 11389771
Amino-acid cycling drives nitrogen fixation in the legume-Rhizobium symbiosis.
Lodwig EM, Hosie AH, Bourdes A, Findlay K, Allaway D, Karunakaran R, Downie JA, Poole PS., Nature 422(6933), 2003
PMID: 12700763
Transcriptome analysis of Sinorhizobium meliloti during symbiosis.
Ampe F, Kiss E, Sabourdy F, Batut J., Genome Biol. 4(2), 2003
PMID: 12620125
Striking complexity of lipopolysaccharide defects in a collection of Sinorhizobium meliloti mutants.
Campbell GR, Sharypova LA, Scheidle H, Jones KM, Niehaus K, Becker A, Walker GC., J. Bacteriol. 185(13), 2003
PMID: 12813079
Rhizobium infection and nodulation: a beneficial plant disease?
Vance CP., Annu. Rev. Microbiol. 37(), 1983
PMID: 6357057
Comprehensive metabolite profiling of Sinorhizobium meliloti using gas chromatography-mass spectrometry.
Barsch A, Patschkowski T, Niehaus K., Funct. Integr. Genomics 4(4), 2004
PMID: 15372312
Quantitative phenotypic analysis of yeast deletion mutants using a highly parallel molecular bar-coding strategy.
Shoemaker DD, Lashkari DA, Morris D, Mittmann M, Davis RW., Nat. Genet. 14(4), 1996
PMID: 8944025
A Broad Host Range Mobilization System for In Vivo Genetic Engineering: Transposon Mutagenesis in Gram Negative Bacteria
Simon, Bio/Technology 1(9), 1983
Characterization of recA genes and recA mutants of Rhizobium meliloti and Rhizobium leguminosarum biovar viciae.
Selbitschka W, Arnold W, Priefer UB, Rottschafer T, Schmidt M, Simon R, Puhler A., Mol. Gen. Genet. 229(1), 1991
PMID: 1896024
Surface polysaccharide involvement in establishing the rhizobium-legume symbiosis.
Fraysse N, Couderc F, Poinsot V., Eur. J. Biochem. 270(7), 2003
PMID: 12653992
Identification of ononitol and O-methyl-scyllo-inositol in pea root nodules
Skøt, Planta 161(1), 1984
The Rhizobium etli bioMNY operon is involved in biotin transport.
Guillen-Navarro K, Araiza G, Garcia-de los Santos A, Mora Y, Dunn MF., FEMS Microbiol. Lett. 250(2), 2005
PMID: 16099603
Metabolic changes of rhizobia in legume nodules.
Prell J, Poole P., Trends Microbiol. 14(4), 2006
PMID: 16520035
Self-compartmentalized bacterial proteases and pathogenesis.
Butler SM, Festa RA, Pearce MJ, Darwin KH., Mol. Microbiol. 60(3), 2006
PMID: 16629660
The lexA gene product represses its own promoter.
Brent R, Ptashne M., Proc. Natl. Acad. Sci. U.S.A. 77(4), 1980
PMID: 6990417
Rhizobium meliloti has three functional copies of the nodD symbiotic regulatory gene.
Honma MA, Ausubel FM., Proc. Natl. Acad. Sci. U.S.A. 84(23), 1987
PMID: 3479806
Construction of a large signature-tagged mini-Tn5 transposon library and its application to mutagenesis of Sinorhizobium meliloti.
Pobigaylo N, Wetter D, Szymczak S, Schiller U, Kurtz S, Meyer F, Nattkemper TW, Becker A., Appl. Environ. Microbiol. 72(6), 2006
PMID: 16751548
Sequential Analysis of the Organogenesis of Lucerne (Medicago sativa) Root Nodules Using Symbiotically-Defective Mutants of Rhizobium meliloti
TRUCHET, Differentiation 16(1-3), 1980
Long-term field release of bioluminescent Sinorhizobium meliloti strains to assess the influence of a recA mutation on the strains' survival.
Selbitschka W, Keller M, Miethling-Graff R, Dresing U, Schwieger F, Krahn I, Homann I, Dammann-Kalinowski T, Puhler A, Tebbe CC., Microb. Ecol. 52(3), 2006
PMID: 16924432
Interrelations between glycine betaine catabolism and methionine biosynthesis in Sinorhizobium meliloti strain 102F34.
Barra L, Fontenelle C, Ermel G, Trautwetter A, Walker GC, Blanco C., J. Bacteriol. 188(20), 2006
PMID: 17015658
Involvement of the syrM and nodD3 genes of Rhizobium meliloti in nod gene activation and in optimal nodulation of the plant host.
Kondorosi E, Buire M, Cren M, Iyer N, Hoffmann B, Kondorosi A., Mol. Microbiol. 5(12), 1991
PMID: 1809842
The highly conserved LepA is a ribosomal elongation factor that back-translocates the ribosome.
Qin Y, Polacek N, Vesper O, Staub E, Einfeldt E, Wilson DN, Nierhaus KH., Cell 127(4), 2006
PMID: 17110332
Identifying the genetic basis of ecologically and biotechnologically useful functions of the bacterium Burkholderia vietnamiensis.
O'Sullivan LA, Weightman AJ, Jones TH, Marchbank AM, Tiedje JM, Mahenthiralingam E., Environ. Microbiol. 9(4), 2007
PMID: 17359273
Pleiotropic effects of mutations that alter the Sinorhizobium meliloti cytochrome c respiratory system.
Yurgel SN, Berrocal J, Wilson C, Kahn ML., Microbiology (Reading, Engl.) 153(Pt 2), 2007
PMID: 17259611
Auxin and nitric oxide control indeterminate nodule formation.
Pii Y, Crimi M, Cremonese G, Spena A, Pandolfini T., BMC Plant Biol. 7(), 2007
PMID: 17488509
Properties of Tn5-induced Carbohydrate Mutants in Rhizobium meliloti
DUNCAN, Microbiology 122(1), 1981
Constructs for insertional mutagenesis, transcriptional signal localization and gene regulation studies in root nodule and other bacteria.
Reeve WG, Tiwari RP, Worsley PS, Dilworth MJ, Glenn AR, Howieson JG., Microbiology (Reading, Engl.) 145 ( Pt 6)(), 1999
PMID: 10411257
Isolation of carbon- and nitrogen-deprivation-induced loci of Sinorhizobium meliloti 1021 by Tn5-luxAB mutagenesis.
Milcamps A, Ragatz DM, Lim P, Berger KA, de Bruijn FJ., Microbiology (Reading, Engl.) 144 ( Pt 11)(), 1998
PMID: 9846756

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

PMID: 18184066
PubMed | Europe PMC

Suchen in

Google Scholar