Adaptive color segmentation - A comparison of neural and statistical methods

Littmann E, Ritter H (1997)
IEEE Transactions on Neural Networks 8(1): 175-185.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Littmann, Enno; Ritter, HelgeUniBi
Abstract / Bemerkung
With the availability of more powerful computers it is nowadays possible to perform pixel based operations on real camera images even in the full color space. New adaptive classification tools like neural networks make it possible to develop special-purpose object detectors that can segment arbitrary objects in real images with a complex distribution in the feature space after training with one or several previously labeled image(s). The paper focuses on a detailed comparison of a neural approach based on local linear maps (LLM's) to a classifier based on normal distributions. The proposed adaptive segmentation method uses local color information to estimate the membership probability in the object, respectively, background class. The method is applied to the recognition and localization of human hands in color camera images of complex laboratory scenes.
Stichworte
hand recognition; color segmentation; adaptive classification; linear maps; local; clustering
Erscheinungsjahr
1997
Zeitschriftentitel
IEEE Transactions on Neural Networks
Band
8
Ausgabe
1
Seite(n)
175-185
ISSN
1045-9227
Page URI
https://pub.uni-bielefeld.de/record/1628322

Zitieren

Littmann E, Ritter H. Adaptive color segmentation - A comparison of neural and statistical methods. IEEE Transactions on Neural Networks. 1997;8(1):175-185.
Littmann, E., & Ritter, H. (1997). Adaptive color segmentation - A comparison of neural and statistical methods. IEEE Transactions on Neural Networks, 8(1), 175-185. https://doi.org/10.1109/72.554203
Littmann, Enno, and Ritter, Helge. 1997. “Adaptive color segmentation - A comparison of neural and statistical methods”. IEEE Transactions on Neural Networks 8 (1): 175-185.
Littmann, E., and Ritter, H. (1997). Adaptive color segmentation - A comparison of neural and statistical methods. IEEE Transactions on Neural Networks 8, 175-185.
Littmann, E., & Ritter, H., 1997. Adaptive color segmentation - A comparison of neural and statistical methods. IEEE Transactions on Neural Networks, 8(1), p 175-185.
E. Littmann and H. Ritter, “Adaptive color segmentation - A comparison of neural and statistical methods”, IEEE Transactions on Neural Networks, vol. 8, 1997, pp. 175-185.
Littmann, E., Ritter, H.: Adaptive color segmentation - A comparison of neural and statistical methods. IEEE Transactions on Neural Networks. 8, 175-185 (1997).
Littmann, Enno, and Ritter, Helge. “Adaptive color segmentation - A comparison of neural and statistical methods”. IEEE Transactions on Neural Networks 8.1 (1997): 175-185.

11 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Gold-standard and improved framework for sperm head segmentation.
Chang V, Saavedra JM, Castañeda V, Sarabia L, Hitschfeld N, Härtel S., Comput Methods Programs Biomed 117(2), 2014
PMID: 25047567
A recent survey on colon cancer detection techniques.
Rathore S, Hussain M, Ali A, Khan A., IEEE/ACM Trans Comput Biol Bioinform 10(3), 2013
PMID: 24091390
Antitumor and angiostatic activities of the antimicrobial peptide dermaseptin B2.
van Zoggel H, Carpentier G, Dos Santos C, Hamma-Kourbali Y, Courty J, Amiche M, Delbé J., PLoS One 7(9), 2012
PMID: 23028527
Graph run-length matrices for histopathological image segmentation.
Tosun AB, Gunduz-Demir C., IEEE Trans Med Imaging 30(3), 2011
PMID: 21097378
A stereovision matching strategy for images captured with fish-eye lenses in forest environments.
Herrera PJ, Pajares G, Guijarro M, Ruz JJ, Cruz JM., Sensors (Basel) 11(2), 2011
PMID: 22319380
A Hopfield Neural Network for combining classifiers applied to textured images.
Pajares G, Guijarro M, Ribeiro A., Neural Netw 23(1), 2010
PMID: 19635657
Multi-resolution border segmentation for measuring spatial heterogeneity of mixed population biofilm bacteria.
Belkasim S, Derado G, Aznita R, Gilbert E, O'Connell H., Comput Med Imaging Graph 32(1), 2008
PMID: 17936583
A neural approach to extract foreground from human movement images.
Conforto S, Schmid M, Neri A, D'Alessio T., Comput Methods Programs Biomed 82(1), 2006
PMID: 16563553
Feature encoding for unsupervised segmentation of color images.
Li N, Li YF., IEEE Trans Syst Man Cybern B Cybern 33(3), 2003
PMID: 18238190
A hierarchical approach to color image segmentation using homogeneity.
Cheng HD, Sun Y., IEEE Trans Image Process 9(12), 2000
PMID: 18262945

20 References

Daten bereitgestellt von Europe PubMed Central.


AUTHOR UNKNOWN, 0
Learning and generalization in cascade network architectures.
Littmann E, Ritter H., Neural Comput 8(7), 1996
PMID: 8823945

niemann, Pattern Analysis and Understanding (), 1990

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
learning with the self-organizing map
ritter, Artificial Neural Networks 1 (), 1991

ritter, Neural Computation and Self-Organizing Maps An Introduction (), 1992

skarbek, Color image segmentation— A survey (), 1994

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

jain, Algorithms for clustering data (), 1988
backpropagation: comments and variations
hanson, Backpropagation Theory Architectures and Applications (), 1995
recognition of 3-d hand orientation from monocular color images by neural semantic networks
kummert, Pattern Recognition and Image Analysis 3(), 1993

kohonen, Self Organization and Associative Memory (), 1982

AUTHOR UNKNOWN, 0

ballard, Computer Vision (), 1982
visual gesture-based robot guidance with a modular neural system
littmann, Advances in Neural Information PRocessing Systems NIPS 8 (), 1996

wyszecki, Color Science Concepts and Methods Quantitative Data and Formulae (), 1982
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 18255622
PubMed | Europe PMC

Suchen in

Google Scholar