The Vicia faba leghemoglobin gene VfLb29 is induced in root nodules and in roots colonized by the arbuscular mycorrhizal fungus Glomus fasciculatum

Fruhling M, Roussel H, GianinazziPearson V, Pühler A, Perlick AM (1997)
MOLECULAR PLANT-MICROBE INTERACTIONS 10(1): 124-131.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Fruhling, M; Roussel, H; GianinazziPearson, V; Pühler, AlfredUniBi ; Perlick, AM
Abstract / Bemerkung
To investigate similarities between symbiotic interactions of broad bean (Vicia faba) with rhizobia and mycorrhizal fungi, plant gene expression induced by both microsymbionts was compared. We demonstrated the exclusive expression of 19 broad bean genes, including VfENOD2, VfENOD5, VfENOD12 and three different leghemoglobin genes, in root nodules. In contrast, the leghemoglobin gene VfLb29 was found to be induced not only in root nodules, but also in broad bean roots colonized by the mycorrhizal fungus Glomus fasciculatum. In uninfected roots, none of the 20 nodulin transcripts investigated was detectable. VfLb29 has an unusually low sequence homology with all other broad bean leghemoglobins as well as with leghemoglobins from other legumes. It can be regarded as a novel kind of leghemoglobin gene not described until now and the induction of which is common to symbiotic interactions of broad bean with both Rhizobium and a mycorrhizal fungus.
Erscheinungsjahr
1997
Zeitschriftentitel
MOLECULAR PLANT-MICROBE INTERACTIONS
Band
10
Ausgabe
1
Seite(n)
124-131
ISSN
0894-0282
Page URI
https://pub.uni-bielefeld.de/record/1628214

Zitieren

Fruhling M, Roussel H, GianinazziPearson V, Pühler A, Perlick AM. The Vicia faba leghemoglobin gene VfLb29 is induced in root nodules and in roots colonized by the arbuscular mycorrhizal fungus Glomus fasciculatum. MOLECULAR PLANT-MICROBE INTERACTIONS. 1997;10(1):124-131.
Fruhling, M., Roussel, H., GianinazziPearson, V., Pühler, A., & Perlick, A. M. (1997). The Vicia faba leghemoglobin gene VfLb29 is induced in root nodules and in roots colonized by the arbuscular mycorrhizal fungus Glomus fasciculatum. MOLECULAR PLANT-MICROBE INTERACTIONS, 10(1), 124-131. https://doi.org/10.1094/MPMI.1997.10.1.124
Fruhling, M, Roussel, H, GianinazziPearson, V, Pühler, Alfred, and Perlick, AM. 1997. “The Vicia faba leghemoglobin gene VfLb29 is induced in root nodules and in roots colonized by the arbuscular mycorrhizal fungus Glomus fasciculatum”. MOLECULAR PLANT-MICROBE INTERACTIONS 10 (1): 124-131.
Fruhling, M., Roussel, H., GianinazziPearson, V., Pühler, A., and Perlick, A. M. (1997). The Vicia faba leghemoglobin gene VfLb29 is induced in root nodules and in roots colonized by the arbuscular mycorrhizal fungus Glomus fasciculatum. MOLECULAR PLANT-MICROBE INTERACTIONS 10, 124-131.
Fruhling, M., et al., 1997. The Vicia faba leghemoglobin gene VfLb29 is induced in root nodules and in roots colonized by the arbuscular mycorrhizal fungus Glomus fasciculatum. MOLECULAR PLANT-MICROBE INTERACTIONS, 10(1), p 124-131.
M. Fruhling, et al., “The Vicia faba leghemoglobin gene VfLb29 is induced in root nodules and in roots colonized by the arbuscular mycorrhizal fungus Glomus fasciculatum”, MOLECULAR PLANT-MICROBE INTERACTIONS, vol. 10, 1997, pp. 124-131.
Fruhling, M., Roussel, H., GianinazziPearson, V., Pühler, A., Perlick, A.M.: The Vicia faba leghemoglobin gene VfLb29 is induced in root nodules and in roots colonized by the arbuscular mycorrhizal fungus Glomus fasciculatum. MOLECULAR PLANT-MICROBE INTERACTIONS. 10, 124-131 (1997).
Fruhling, M, Roussel, H, GianinazziPearson, V, Pühler, Alfred, and Perlick, AM. “The Vicia faba leghemoglobin gene VfLb29 is induced in root nodules and in roots colonized by the arbuscular mycorrhizal fungus Glomus fasciculatum”. MOLECULAR PLANT-MICROBE INTERACTIONS 10.1 (1997): 124-131.

34 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Cooperation and coexpression: How coexpression networks shift in response to multiple mutualists.
Palakurty SX, Stinchcombe JR, Afkhami ME., Mol Ecol 27(8), 2018
PMID: 29533484
Salicylic acids: local, systemic or inter-systemic regulators?
Hayat S, Irfan M, Wani AS, Alyemeni MN, Ahmad A., Plant Signal Behav 7(1), 2012
PMID: 22301975
Ecological services of faba bean
Köpke Ulrich, Nemecek Thomas., Field Crops Res 115(3), 2010
PMID: IND44316552
Model legumes contribute to faba bean breeding
Rispail Nicolas, Kaló Péter, Kiss GyörgyB, Ellis THNoel, Gallardo Karine, Thompson RichardD, Prats Elena, Larrainzar Estibaliz, Ladrera Ruben, González EstherM, Arrese-Igor Cesar, Ferguson BrettJ, Gresshoff PeterM, Rubiales Diego., Field Crops Res 115(3), 2010
PMID: IND44316555
Auxins as signals in arbuscular mycorrhiza formation.
Ludwig-Müller J, Güther M., Plant Signal Behav 2(3), 2007
PMID: 19704695
Transcriptional snapshots provide insights into the molecular basis of arbuscular mycorrhiza in the model legume Medicago truncatula.
Hohnjec N, Henckel K, Bekel T, Gouzy J, Dondrup M, Goesmann A, Kuster H., Functional plant biology : FPB. 33(8), 2006
PMID: IND43838506
Seven Lotus japonicus genes required for transcriptional reprogramming of the root during fungal and bacterial symbiosis.
Kistner C, Winzer T, Pitzschke A, Mulder L, Sato S, Kaneko T, Tabata S, Sandal N, Stougaard J, Webb KJ, Szczyglowski K, Parniske M., Plant Cell 17(8), 2005
PMID: 15980262
Pseudomonas fluorescens and Glomus mosseae trigger DMI3-dependent activation of genes related to a signal transduction pathway in roots of Medicago truncatula.
Sanchez L, Weidmann S, Arnould C, Bernard AR, Gianinazzi S, Gianinazzi-Pearson V., Plant Physiol 139(2), 2005
PMID: 16183836
Identification of membrane-associated proteins regulated by the arbuscular mycorrhizal symbiosis.
Valot B, Dieu M, Recorbet G, Raes M, Gianinazzi S, Dumas-Gaudot E., Plant Mol Biol 59(4), 2005
PMID: 16244907
Common gene expression in Medicago truncatula roots in response to Pseudomonas fluorescens colonization, mycorrhiza development and nodulation.
Sanchez L, Weidmann S, Brechenmacher L, Batoux M, Tuinen Dvan, Lemanceau P, Gianinazzi S, Gianinazzi-Pearson V., New Phytol 161(3), 2004
PMID: IND43667497
Transcriptome profiling in root nodules and arbuscular mycorrhiza identifies a collection of novel genes induced during Medicago truncatula root endosymbioses.
Manthey K, Krajinski F, Hohnjec N, Firnhaber C, Pühler A, Perlick AM, Küster H., Mol Plant Microbe Interact 17(10), 2004
PMID: 15497399
The root nodule-arbuscular mycorrhizae-plant pathogen relationship.
Heath MC., Physiol Mol Plant Pathol 60(3), 2002
PMID: IND23301170
A cullin gene is induced in tomato roots forming arbuscular mycorrhizae.
Tahiri-Alaoui A, Lingua G, Avrova A, Sampo S, Fusconi A, Antoniw J, Berta G., Can J Bot 80(6), 2002
PMID: IND23291025
Eph family functions from an evolutionary perspective.
Drescher U., Curr Opin Genet Dev 12(4), 2002
PMID: 12100883
Expression of symbiotic and nonsymbiotic globin genes responding to microsymbionts on Lotus japonicus.
Uchiumi T, Shimoda Y, Tsuruta T, Mukoyoshi Y, Suzuki A, Senoo K, Sato S, Kato T, Tabata S, Higashi S, Abe M., Plant Cell Physiol 43(11), 2002
PMID: 12461135
Medicago truncatula ENOD11: a novel RPRP-encoding early nodulin gene expressed during mycorrhization in arbuscule-containing cells.
Journet EP, El-Gachtouli N, Vernoud V, de Billy F, Pichon M, Dedieu A, Arnould C, Morandi D, Barker DG, Gianinazzi-Pearson V., Mol Plant Microbe Interact 14(6), 2001
PMID: 11386369
Expression and evolution of functionally distinct haemoglobin genes in plants.
Hunt PW, Watts RA, Trevaskis B, Llewelyn DJ, Burnell J, Dennis ES, Peacock WJ., Plant Mol Biol 47(5), 2001
PMID: 11725952
Analysis of Medicago truncatula nodule expressed sequence tags.
Györgyey J, Vaubert D, Jiménez-Zurdo JI, Charon C, Troussard L, Kondorosi A, Kondorosi E., Mol Plant Microbe Interact 13(1), 2000
PMID: 10656586
The evolution of nodulation.
Gualtieri G, Bisseling T., Plant Mol Biol 42(1), 2000
PMID: 10688136
Differential expression of eight chitinase genes in Medicago truncatula roots during mycorrhiza formation, nodulation, and pathogen infection.
Salzer P, Bonanomi A, Beyer K, Vögeli-Lange R, Aeschbacher RA, Lange J, Wiemken A, Kim D, Cook DR, Boller T., Mol Plant Microbe Interact 13(7), 2000
PMID: 10875337
Legume nodulation and mycorrhizae formation; two extremes in host specificity meet.
Albrecht C, Geurts R, Bisseling T., EMBO J 18(2), 1999
PMID: 9889184
Novel genes induced during an arbuscular mycorrhizal (AM) symbiosis formed between Medicago truncatula and Glomus versiforme.
van Buuren ML, Maldonado-Mendoza IE, Trieu AT, Blaylock LA, Harrison MJ., Mol Plant Microbe Interact 12(3), 1999
PMID: 10065555
MOLECULAR AND CELLULAR ASPECTS OF THE ARBUSCULAR MYCORRHIZAL SYMBIOSIS.
Harrison MJ., Annu Rev Plant Physiol Plant Mol Biol 50(), 1999
PMID: 15012214
Regulation of symbiotic root nodule development.
Schultze M, Kondorosi A., Annu Rev Genet 32(), 1998
PMID: 9928474
One stop mycology.
Frazer LN., Mycol Res 102(1), 1998
PMID: IND20631344
Cloning and analysis of psam2, a gene from Pisum sativum L. regulated in symbiotic arbuscular mycorrhiza and pathogenic root-fungus interactions.
Krajinski F, Martin-Laurent F, Gianinazzi S, Gianinazzi-Pearson V, Franken P., Physiol Mol Plant Pathol 52(5), 1998
PMID: IND21960597
Development of the arbuscular mycorrhizal symbiosis.
Harrison MJ., Curr Opin Plant Biol 1(4), 1998
PMID: 10066599
Expression of early nodulin genes in alfalfa mycorrhizae indicates that signal transduction pathways used in forming arbuscular mycorrhizae and Rhizobium-induced nodules may be conserved.
van Rhijn P, Fang Y, Galili S, Shaul O, Atzmon N, Wininger S, Eshed Y, Lum M, Li Y, To V, Fujishige N, Kapulnik Y, Hirsch AM., Proc Natl Acad Sci U S A 94(10), 1997
PMID: 11038545

32 References

Daten bereitgestellt von Europe PubMed Central.

Symbiotic and nonsymbiotic hemoglobin genes of Casuarina glauca.
Jacobsen-Lyon K, Jensen EO, Jorgensen JE, Marcker KA, Peacock WJ, Dennis ES., Plant Cell 7(2), 1995
PMID: 7756831
Sequential induction of nodulin gene expression in the developing pea nodule.
Scheres B, van Engelen F, van der Knaap E, van de Wiel C, van Kammen A, Bisseling T., Plant Cell 2(8), 1990
PMID: 2152123
First report of non-mycorrhizal plant mutants (Myc−) obtained in pea (Pisum sativum L.) and fababean (Vicia faba L.)
DUC, Plant Science 60(2), 1989
Rhizobium--plant signal exchange.
Fisher RF, Long SR., Nature 357(6380), 1992
PMID: 1614514
Leghemoglobin and Rhizobium Respiration
Appleby, Annual Review of Plant Physiology 35(1), 1984
Four hundred-million-year-old vesicular arbuscular mycorrhizae.
Remy W, Taylor TN, Hass H, Kerp H., Proc. Natl. Acad. Sci. U.S.A. 91(25), 1994
PMID: 11607500
Cloned nodulin genes for symbiotic nitrogen fixation
Delauney, Plant Molecular Biology Reporter 6(4), 1988
A consensus sequence of plant hemoglobins
Arredondo-Peter, Plant Molecular Biology Reporter 9(3), 1991
Hemoglobin genes in non-legumes: cloning and characterization of a Casuarina glauca hemoglobin gene.
Christensen T, Dennis ES, Peacock JW, Landsmann J, Marcker KA., Plant Mol. Biol. 16(2), 1991
PMID: 1893106
Common evolutionary origin of legume and non-legume plant haemoglobins
Landsmann, Nature 324(6093), 1986
A cereal haemoglobin gene is expressed in seed and root tissues under anaerobic conditions.
Taylor ER, Nie XZ, MacGregor AW, Hill RD., Plant Mol. Biol. 24(6), 1994
PMID: 8204823
Interactions between three alfalfa nodulation genotypes and two Glomus species
BRADBURY, New Phytologist 119(1), 1991
Improved tools for biological sequence comparison.
Pearson WR, Lipman DJ., Proc. Natl. Acad. Sci. U.S.A. 85(8), 1988
PMID: 3162770
The current status and portability of our sequence handling software.
Staden R., Nucleic Acids Res. 14(1), 1986
PMID: 3511446
Diversity of abundant mRNA sequences and patterns of protein synthesis in etiolated and greened pea seedlings
Vries, Planta 156(2), 1982
A simplified protocol for fast plasmid DNA sequencing.
Zimmermann J, Voss H, Schwager C, Stegemann J, Erfle H, Stucky K, Kristensen T, Ansorge W., Nucleic Acids Res. 18(4), 1990
PMID: 2315028
Controlled pollinations of carrot
Simon, Plant Molecular Biology Reporter 2(3), 1984
Functioning haemoglobin genes in non-nodulating plants.
Bogusz D, Appleby CA, Landsmann J, Dennis ES, Trinick MJ, Peacock WJ., Nature 331(6152), 1988
PMID: 2448639
Vesicular-arbuscular mycorrhizas of wild-type soybean and non-nodulating mutants with Glomus mosseae contain symbiosis-specific polypeptides (mycorrhizins), immunologically cross-reactive with nodulins
Wyss, Planta 182(1), 1990
Cellular localization and cytochemical probing of resistance reactions to arbuscular mycorrhizal fungi in a ‘locus a’ myc− mutant of Pisum sativum L.
Gollotte, Planta 191(1), 1993
The pea late nodulin gene PsNOD6 is homologous to the early nodulin genes PsENOD3/14 and is expressed after the leghaemoglobin genes.
Kardailsky I, Yang WC, Zalensky A, van Kammen A, Bisseling T., Plant Mol. Biol. 23(5), 1993
PMID: 8260623
Structure and function of the interfaces in biotrophic symbioses as they relate to nutrient transport
SMITH, New Phytologist 114(1), 1990
A role for haemoglobin in all plant roots?
APPLEBY, Plant Cell & Environment 11(5), 1988
Oxygen and the regulation of nitrogen fixation in legume nodules
Layzell, Physiologia Plantarum 80(2), 1990
Root nodule development: origin, function and regulation of nodulin genes
Verma, Physiologia Plantarum 85(2), 1992
Bacteroids in the Rhizobium-Legume Symbiosis Inhabit a Plant Internal Lytic Compartment: Implications for other Microbial Endosymbioses
MELLOR, Journal of Experimental Botany 40(8), 1989
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 9002275
PubMed | Europe PMC

Suchen in

Google Scholar