The exbD2 gene as well as the iron-uptake genes tonB, exbB and exbD1 of Xanthomonas campestris pv. campestris are essential for the induction of a hypersensitive response on pepper (Capsicum annuum)

Wiggerich HG, Pühler A (2000)
MICROBIOLOGY-SGM 146: 1053-1060.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Wiggerich, HG; Pühler, AlfredUniBi
Abstract / Bemerkung
The tonB, exbB and exbD1 genes of Xanthomonas campestris pv. campestris are essential for ferric iron uptake. In contrast, the exbD2 gene located in the same gene cluster is not essential. Mutational analysis revealed that the ferric-iron-uptake genes tonB, exbB and exbD1 are necessary for the induction of a hypersensitive response (HR) on the nonhost plant pepper (Capsicum annuum) and the induction of typical black rot symptoms on the host plant cauliflower (Brassica oleracea). Again, the exbD2 gene behaved differently. It was found to play a role only in the induction of the HR in pepper but not in the induction of black rot symptoms in cauliflower. Due to the low iron concentration in the plant tissue, the titre of viable bacteria of the ferric-iron-uptake mutants tonB, exbB and exbD1 decreased after leaf infiltration of pepper. The exbD2 mutant, however, which is not impaired in ferric iron uptake, multiplied in the pepper leaf tissue and grew even better than the wild-type strain, probably due to its failure to induce the HR. Nevertheless, the tonB, exbB and exbD1 mutant strains were able to spread systemically in cauliflower.
Stichworte
Xanthomonas campestris; tonB; exbB; exbD; Capsicum annuum
Erscheinungsjahr
2000
Zeitschriftentitel
MICROBIOLOGY-SGM
Band
146
Seite(n)
1053-1060
ISSN
1350-0872
Page URI
https://pub.uni-bielefeld.de/record/1619894

Zitieren

Wiggerich HG, Pühler A. The exbD2 gene as well as the iron-uptake genes tonB, exbB and exbD1 of Xanthomonas campestris pv. campestris are essential for the induction of a hypersensitive response on pepper (Capsicum annuum). MICROBIOLOGY-SGM. 2000;146:1053-1060.
Wiggerich, H. G., & Pühler, A. (2000). The exbD2 gene as well as the iron-uptake genes tonB, exbB and exbD1 of Xanthomonas campestris pv. campestris are essential for the induction of a hypersensitive response on pepper (Capsicum annuum). MICROBIOLOGY-SGM, 146, 1053-1060. https://doi.org/10.1099/00221287-146-5-1053
Wiggerich, HG, and Pühler, Alfred. 2000. “The exbD2 gene as well as the iron-uptake genes tonB, exbB and exbD1 of Xanthomonas campestris pv. campestris are essential for the induction of a hypersensitive response on pepper (Capsicum annuum)”. MICROBIOLOGY-SGM 146: 1053-1060.
Wiggerich, H. G., and Pühler, A. (2000). The exbD2 gene as well as the iron-uptake genes tonB, exbB and exbD1 of Xanthomonas campestris pv. campestris are essential for the induction of a hypersensitive response on pepper (Capsicum annuum). MICROBIOLOGY-SGM 146, 1053-1060.
Wiggerich, H.G., & Pühler, A., 2000. The exbD2 gene as well as the iron-uptake genes tonB, exbB and exbD1 of Xanthomonas campestris pv. campestris are essential for the induction of a hypersensitive response on pepper (Capsicum annuum). MICROBIOLOGY-SGM, 146, p 1053-1060.
H.G. Wiggerich and A. Pühler, “The exbD2 gene as well as the iron-uptake genes tonB, exbB and exbD1 of Xanthomonas campestris pv. campestris are essential for the induction of a hypersensitive response on pepper (Capsicum annuum)”, MICROBIOLOGY-SGM, vol. 146, 2000, pp. 1053-1060.
Wiggerich, H.G., Pühler, A.: The exbD2 gene as well as the iron-uptake genes tonB, exbB and exbD1 of Xanthomonas campestris pv. campestris are essential for the induction of a hypersensitive response on pepper (Capsicum annuum). MICROBIOLOGY-SGM. 146, 1053-1060 (2000).
Wiggerich, HG, and Pühler, Alfred. “The exbD2 gene as well as the iron-uptake genes tonB, exbB and exbD1 of Xanthomonas campestris pv. campestris are essential for the induction of a hypersensitive response on pepper (Capsicum annuum)”. MICROBIOLOGY-SGM 146 (2000): 1053-1060.

23 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Comparative transcription profiling of two fermentation cultures of Xanthomonas campestris pv. campestris B100 sampled in the growth and in the stationary phase.
Alkhateeb RS, Vorhölter FJ, Steffens T, Rückert C, Ortseifen V, Hublik G, Niehaus K, Pühler A., Appl Microbiol Biotechnol 102(15), 2018
PMID: 29858955
Systems and synthetic biology perspective of the versatile plant-pathogenic and polysaccharide-producing bacterium Xanthomonas campestris.
Schatschneider S, Schneider J, Blom J, Létisse F, Niehaus K, Goesmann A, Vorhölter FJ., Microbiology 163(8), 2017
PMID: 28795660
TonB Energy Transduction Systems of Riemerella anatipestifer Are Required for Iron and Hemin Utilization.
Liao H, Cheng X, Zhu D, Wang M, Jia R, Chen S, Chen X, Biville F, Liu M, Cheng A., PLoS One 10(5), 2015
PMID: 26017672
Characterization of the Burkholderia mallei tonB Mutant and Its Potential as a Backbone Strain for Vaccine Development.
Mott TM, Vijayakumar S, Sbrana E, Endsley JJ, Torres AG., PLoS Negl Trop Dis 9(6), 2015
PMID: 26114445
Metabolic flux pattern of glucose utilization by Xanthomonas campestris pv. campestris: prevalent role of the Entner-Doudoroff pathway and minor fluxes through the pentose phosphate pathway and glycolysis.
Schatschneider S, Huber C, Neuweger H, Watt TF, Pühler A, Eisenreich W, Wittmann C, Niehaus K, Vorhölter FJ., Mol Biosyst 10(10), 2014
PMID: 25072918
Functional features of TonB energy transduction systems of Acinetobacter baumannii.
Zimbler DL, Arivett BA, Beckett AC, Menke SM, Actis LA., Infect Immun 81(9), 2013
PMID: 23817614
Utilization of heme as an iron source by marine Alphaproteobacteria in the Roseobacter clade.
Roe KL, Hogle SL, Barbeau KA., Appl Environ Microbiol 79(18), 2013
PMID: 23872569
The genome of Xanthomonas campestris pv. campestris B100 and its use for the reconstruction of metabolic pathways involved in xanthan biosynthesis.
Vorhölter FJ, Schneiker S, Goesmann A, Krause L, Bekel T, Kaiser O, Linke B, Patschkowski T, Rückert C, Schmid J, Sidhu VK, Sieber V, Tauch A, Watt SA, Weisshaar B, Becker A, Niehaus K, Pühler A., J Biotechnol 134(1-2), 2008
PMID: 18304669
Comparative analyses of Xanthomonas and Xylella complete genomes.
Moreira LM, De Souza RF, Digiampietri LA, Da Silva AC, Setubal JC., OMICS 9(1), 2005
PMID: 15805778
Involvement of tonB-exbBD1D2 operon in infection of Xanthomonas campestris phage phi L7.
Hung CH, Yang CF, Yang CY, Tseng YH., Biochem Biophys Res Commun 302(4), 2003
PMID: 12646254
Comparison of two Xanthomonas campestris pathovar campestris genomes revealed differences in their gene composition.
Vorhölter FJ, Thias T, Meyer F, Bekel T, Kaiser O, Pühler A, Niehaus K., J Biotechnol 106(2-3), 2003
PMID: 14651861
A genomic approach to the understanding of Xylella fastidiosa pathogenicity.
Lambais MR, Goldman MH, Camargo LE, Goldman GH., Curr Opin Microbiol 3(5), 2000
PMID: 11050442

38 References

Daten bereitgestellt von Europe PubMed Central.


AUTHOR UNKNOWN, Mol Plant–Microbe Interact 4(), 1991

AUTHOR UNKNOWN, Proc Natl Acad Sci USA 73(), 1976
hrp genes of phytopathogenic bacteria.
Bonas U., Curr. Top. Microbiol. Immunol. 192(), 1994
PMID: 7859514
Induction of Hydrolytic Enzymes in Brassica campestris in Response to Pathovars of Xanthomonas campestris.
Conrads-Strauch J, Dow JM, Milligan DE, Parra R, Daniels MJ., Plant Physiol. 93(1), 1990
PMID: 16667441
The enigmatic avirulence genes of phytopathogenic bacteria.
Dangl JL., Curr. Top. Microbiol. Immunol. 192(), 1994
PMID: 7859515

AUTHOR UNKNOWN, 1992
The role of iron in plant host-pathogen interactions.
Expert D, Enard C, Masclaux C., Trends Microbiol. 4(6), 1996
PMID: 8795159

AUTHOR UNKNOWN, Mol Plant–Microbe Interact 8(), 1995

AUTHOR UNKNOWN, Mol Plant–Microbe Interact 5(), 1992

AUTHOR UNKNOWN, EMBO J 145(), 1995

AUTHOR UNKNOWN, 1982
Role for the outer membrane ferric siderophore receptor PupB in signal transduction across the bacterial cell envelope.
Koster M, van Klompenburg W, Bitter W, Leong J, Weisbeek P., EMBO J. 13(12), 1994
PMID: 8026465

AUTHOR UNKNOWN, Mol Plant–Microbe Interact 4(), 1991

AUTHOR UNKNOWN, 0
TonB and the gram-negative dilemma.
Postle K., Mol. Microbiol. 4(12), 1990
PMID: 2150975

AUTHOR UNKNOWN, Top Curr Chem 123(), 1989

AUTHOR UNKNOWN, Mol Plant–Microbe Interact 8(), 1995

AUTHOR UNKNOWN, 1993

AUTHOR UNKNOWN, 0
Recognition of the bacterial avirulence protein AvrBs3 occurs inside the host plant cell.
Van den Ackerveken G, Marois E, Bonas U., Cell 87(7), 1996
PMID: 8980236
Harpin, elicitor of the hypersensitive response produced by the plant pathogen Erwinia amylovora.
Wei ZM, Laby RJ, Zumoff CH, Bauer DW, He SY, Collmer A, Beer SV., Science 257(5066), 1992
PMID: 1621099

AUTHOR UNKNOWN, Plant Dis 64(), 1980

AUTHOR UNKNOWN, Mol Plant–Microbe Interact 4(), 1991

AUTHOR UNKNOWN, Mol Plant–Microbe Interact 8(), 1995
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 10832632
PubMed | Europe PMC

Suchen in

Google Scholar