Characterization of a small GTP-binding protein of the rab 5 family in Mesembryanthemum crystallinum with increased level of expression during early salt stress

Bolte S, Schiene K, Dietz K-J (2000)
PLANT MOLECULAR BIOLOGY 42(6): 923-935.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Bolte, S; Schiene, K; Dietz, Karl-JosefUniBi
Abstract / Bemerkung
A cDNA encoding a member of the Ypt/Rab family of small GTP-binding proteins was cloned from the facultative CAM plant Mesembryanthemum crystallinum. Mcrab5b includes an open reading frame of 201 amino acids. The deduced amino acid sequence shows 91% similarity to LjRAB5b isolated from Lotus japonicus. The amino acid sequence of McRAB5b provides interesting features suggesting that McRAB5b and its homologue from Lotus japonicus represent a new subclass of Ypt/Rab proteins. The fact that proteins like McRAB5b and LjRAB5b were only found in plants and not in yeast or vertebrates suggests that they have plant-specific functions. The expression of Mcrab5b as investigated by northern blot hybridization and RT-PCR was stimulated under salt stress. After heterologous expression in Escherichia coli an antibody was raised against recombinant McRAB5b protein. Western blot analysis revealed that McRAB5b was bound to membranes. It is present in a monomeric and a dimeric form in vitro and in vivo. In vitro only the monomeric protein exhibits a binding capacity for radiolabelled GTP, while the dimer is unable to do so, indicating that the activity may be regulated by monomer/dimer transition.
Stichworte
salt stress; small GTPase; Mesembryanthemum crystallinum
Erscheinungsjahr
2000
Zeitschriftentitel
PLANT MOLECULAR BIOLOGY
Band
42
Ausgabe
6
Seite(n)
923-935
ISSN
0167-4412
Page URI
https://pub.uni-bielefeld.de/record/1619848

Zitieren

Bolte S, Schiene K, Dietz K-J. Characterization of a small GTP-binding protein of the rab 5 family in Mesembryanthemum crystallinum with increased level of expression during early salt stress. PLANT MOLECULAR BIOLOGY. 2000;42(6):923-935.
Bolte, S., Schiene, K., & Dietz, K. - J. (2000). Characterization of a small GTP-binding protein of the rab 5 family in Mesembryanthemum crystallinum with increased level of expression during early salt stress. PLANT MOLECULAR BIOLOGY, 42(6), 923-935. https://doi.org/10.1023/A:1006449715236
Bolte, S, Schiene, K, and Dietz, Karl-Josef. 2000. “Characterization of a small GTP-binding protein of the rab 5 family in Mesembryanthemum crystallinum with increased level of expression during early salt stress”. PLANT MOLECULAR BIOLOGY 42 (6): 923-935.
Bolte, S., Schiene, K., and Dietz, K. - J. (2000). Characterization of a small GTP-binding protein of the rab 5 family in Mesembryanthemum crystallinum with increased level of expression during early salt stress. PLANT MOLECULAR BIOLOGY 42, 923-935.
Bolte, S., Schiene, K., & Dietz, K.-J., 2000. Characterization of a small GTP-binding protein of the rab 5 family in Mesembryanthemum crystallinum with increased level of expression during early salt stress. PLANT MOLECULAR BIOLOGY, 42(6), p 923-935.
S. Bolte, K. Schiene, and K.-J. Dietz, “Characterization of a small GTP-binding protein of the rab 5 family in Mesembryanthemum crystallinum with increased level of expression during early salt stress”, PLANT MOLECULAR BIOLOGY, vol. 42, 2000, pp. 923-935.
Bolte, S., Schiene, K., Dietz, K.-J.: Characterization of a small GTP-binding protein of the rab 5 family in Mesembryanthemum crystallinum with increased level of expression during early salt stress. PLANT MOLECULAR BIOLOGY. 42, 923-935 (2000).
Bolte, S, Schiene, K, and Dietz, Karl-Josef. “Characterization of a small GTP-binding protein of the rab 5 family in Mesembryanthemum crystallinum with increased level of expression during early salt stress”. PLANT MOLECULAR BIOLOGY 42.6 (2000): 923-935.

35 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Intracellular Vesicle Trafficking Genes, RabC-GTP, Are Highly Expressed Under Salinity and Rapid Dehydration but Down-Regulated by Drought in Leaves of Chickpea (Cicer arietinum L.).
Khassanova G, Kurishbayev A, Jatayev S, Zhubatkanov A, Zhumalin A, Turbekova A, Amantaev B, Lopato S, Schramm C, Jenkins C, Soole K, Langridge P, Shavrukov Y., Front Genet 10(), 2019
PMID: 30792734
Involvement of SchRabGDI1 from Solanum chilense in endocytic trafficking and tolerance to salt stress.
Martín-Davison AS, Pérez-Díaz R, Soto F, Madrid-Espinoza J, González-Villanueva E, Pizarro L, Norambuena L, Tapia J, Tajima H, Blumwald E, Ruiz-Lara S., Plant Sci 263(), 2017
PMID: 28818364
NbRABG3f, a member of Rab GTPase, is involved in Bamboo mosaic virus infection in Nicotiana benthamiana.
Huang YP, Jhuo JH, Tsai MS, Tsai CH, Chen HC, Lin NS, Hsu YH, Cheng CP., Mol Plant Pathol 17(5), 2016
PMID: 26416342
Molecular Analysis and Localization of CaARA7 a Conventional RAB5 GTPase from Characean Algae.
Hoepflinger MC, Geretschlaeger A, Sommer A, Hoeftberger M, Hametner C, Ueda T, Foissner I., Traffic 16(5), 2015
PMID: 25639563
Molecular characterization and expression analysis of a GTP-binding protein (MiRab5) in Mangifera indica.
Liu ZL, Luo C, Dong L, Van Toan C, Wei PX, He XH., Gene 540(1), 2014
PMID: 24560931
Isolation and characterization of a stress responsive small GTP-binding protein AhRabG3b in peanut (Arachis hypogaea L.)
Sui JM, Li R, Fan QC, Song L, Zheng CH, Wang JS, Qiao LX, Yu SL., Euphytica 189(2), 2013
PMID: IND500612275
Molecular and biochemical analysis of the first ARA6 homologue, a RAB5 GTPase, from green algae.
Hoepflinger MC, Geretschlaeger A, Sommer A, Hoeftberger M, Nishiyama T, Sakayama H, Hammerl P, Tenhaken R, Ueda T, Foissner I., J Exp Bot 64(18), 2013
PMID: 24127512
Endosomal trafficking pathway regulated by ARA6, a RAB5 GTPase unique to plants.
Ebine K, Miyakawa N, Fujimoto M, Uemura T, Nakano A, Ueda T., Small GTPases 3(1), 2012
PMID: 22710734
The small GTPase ROP6 interacts with NFR5 and is involved in nodule formation in Lotus japonicus.
Ke D, Fang Q, Chen C, Zhu H, Chen T, Chang X, Yuan S, Kang H, Ma L, Hong Z, Zhang Z., Plant Physiol 159(1), 2012
PMID: 22434040
Conserved and plant-unique mechanisms regulating plant post-Golgi traffic.
Fujimoto M, Ueda T., Front Plant Sci 3(), 2012
PMID: 22973281
Protein isoprenylation: the fat of the matter.
Crowell DN, Huizinga DH., Trends Plant Sci 14(3), 2009
PMID: 19201644
Proteomic analysis on a high salt tolerance introgression strain of Triticum aestivum/Thinopyrum ponticum.
Wang MC, Peng ZY, Li CL, Li F, Liu C, Xia GM., Proteomics 8(7), 2008
PMID: 18383010
The POK/AtVPS52 protein localizes to several distinct post-Golgi compartments in sporophytic and gametophytic cells.
Guermonprez H, Smertenko A, Crosnier MT, Durandet M, Vrielynck N, Guerche P, Hussey PJ, Satiat-Jeunemaitre B, Bonhomme S., J Exp Bot 59(11), 2008
PMID: 18583349
Fluorescent proteins as markers in the plant secretory pathway.
Hanton SL, Brandizzi F., Microsc Res Tech 69(3), 2006
PMID: 16538625
Rice GTPase OsRacB: potential accessory factor in plant salt-stress signaling.
Luo M, Gu SH, Zhao SH, Zhang F, Wu NH., Acta Biochim Biophys Sin (Shanghai) 38(6), 2006
PMID: 16761097
Identification of plant cytoskeleton-interacting proteins by screening for actin stress fiber association in mammalian fibroblasts.
Abu-Abied M, Golomb L, Belausov E, Huang S, Geiger B, Kam Z, Staiger CJ, Sadot E., Plant J 48(3), 2006
PMID: 17010111
Expressed sequence tags from Thellungiella halophila, a new model to study plant salt-tolerance.
Wang ZL, Li PH, Fredricksen M, Gong ZZ, Kim CS, Zhang C, Bohnert HJ, Zhu JK, Bressan RA, Hasegawa PM., Plant Sci 166(3), 2004
PMID: IND43633066
Analysis of the small GTPase gene superfamily of Arabidopsis.
Vernoud V, Horton AC, Yang Z, Nielsen E., Plant Physiol 131(3), 2003
PMID: 12644670
Uptake of an endocytic marker by rice cells: variations related to osmotic and saline stress.
Bahaji A, Aniento F, Cornejo MJ., Plant Cell Physiol 44(10), 2003
PMID: 14581635
Molecular and biochemical analyses of OsRab7, a rice Rab7 homolog.
Nahm MY, Kim SW, Yun D, Lee SY, Cho MJ, Bahk JD., Plant Cell Physiol 44(12), 2003
PMID: 14701929
Vesicular traffic: an integral part of plant life.
Ueda T, Nakano A., Curr Opin Plant Biol 5(6), 2002
PMID: 12393014
The Arabidopsis Rab GTPase family: another enigma variation.
Rutherford S, Moore I., Curr Opin Plant Biol 5(6), 2002
PMID: 12393015

53 References

Daten bereitgestellt von Europe PubMed Central.

A fast method for high-quality genomic DNA extraction from whole human blood.
Gustincich S, Manfioletti G, Del Sal G, Schneider C, Carninci P., BioTechniques 11(3), 1991
PMID: 1931026
Structure-function relationship of the small GTPase rab5.
Li G, Stahl PD., J. Biol. Chem. 268(32), 1993
PMID: 8226999
A homolog of the mammalian GTPase Rab2 is present in Arabidopsis and is expressed predominantly in pollen grains and seedlings.
Moore I, Diefenthal T, Zarsky V, Schell J, Palme K., Proc. Natl. Acad. Sci. U.S.A. 94(2), 1997
PMID: 9012859
Myristoylation of an inhibitory GTP-binding protein alpha subunit is essential for its membrane attachment.
Jones TL, Simonds WF, Merendino JJ Jr, Brann MR, Spiegel AM., Proc. Natl. Acad. Sci. U.S.A. 87(2), 1990
PMID: 2105488
Localization of low molecular weight GTP binding proteins to exocytic and endocytic compartments.
Chavrier P, Parton RG, Hauri HP, Simons K, Zerial M., Cell 62(2), 1990
PMID: 2115402
Cloning and characterization of rac-like cDNAs from Arabidopsis thaliana.
Winge P, Brembu T, Bones AM., Plant Mol. Biol. 35(4), 1997
PMID: 9349271
Distinct structural elements of rab5 define its functional specificity.
Stenmark H, Valencia A, Martinez O, Ullrich O, Goud B, Zerial M., EMBO J. 13(3), 1994
PMID: 8313902
Crystal structures of the small G protein Rap2A in complex with its substrate GTP, with GDP and with GTPgammaS.
Cherfils J, Menetrey J, Le Bras G, Janoueix-Lerosey I, de Gunzburg J, Garel JR, Auzat I., EMBO J. 16(18), 1997
PMID: 9312017
Early salt stress effects on the differential expression of vacuolar H(+)-ATPase genes in roots and leaves of Mesembryanthemum crystallinum.
Low R, Rockel B, Kirsch M, Ratajczak R, Hortensteiner S, Martinoia E, Luttge U, Rausch T., Plant Physiol. 110(1), 1996
PMID: 8587987
Regional polysterism in the GTP-bound form of the human c-Ha-Ras protein.
Ito Y, Yamasaki K, Iwahara J, Terada T, Kamiya A, Shirouzu M, Muto Y, Kawai G, Yokoyama S, Laue ED, Walchli M, Shibata T, Nishimura S, Miyazawa T., Biochemistry 36(30), 1997
PMID: 9230043
Isolation and characterization of cDNAs that encode eleven small GTP-binding proteins from Pisum sativum.
Nagano Y, Murai N, Matsuno R, Sasaki Y., Plant Cell Physiol. 34(3), 1993
PMID: 8019783
Subunit E of the vacuolar H(+)-ATPase of Hordeum vulgare L.: cDNA cloning, expression and immunological analysis.
Dietz KJ, Rudloff S, Ageorges A, Eckerskorn C, Fischer K, Arbinger B., Plant J. 8(4), 1995
PMID: 7496398
GTP-binding proteins in plants.
Bischoff F, Molendijk A, Rajendrakumar CS, Palme K., Cell. Mol. Life Sci. 55(2), 1999
PMID: 10188584
Crystal structure of RhoA-GDP and its functional implications.
Wei Y, Zhang Y, Derewenda U, Liu X, Minor W, Nakamoto RK, Somlyo AV, Somlyo AP, Derewenda ZS., Nat. Struct. Biol. 4(9), 1997
PMID: 9302995
The cellular functions of small GTP-binding proteins.
Hall A., Science 249(4969), 1990
PMID: 2116664
SH2 and SH3 domains: elements that control interactions of cytoplasmic signaling proteins.
Koch CA, Anderson D, Moran MF, Ellis C, Pawson T., Science 252(5006), 1991
PMID: 1708916
Molecular characterization of a cDNA encoding a novel small GTP-binding protein from Arabidopsis thaliana.
Mikami K, Ichimura K, Iuch S, Yamaguchi-Shinozaki K, Shinozaki K., Biochim. Biophys. Acta 1354(2), 1997
PMID: 9396626
GTP-binding proteins in intracellular transport.
Pfeffer SR., Trends Cell Biol. 2(2), 1992
PMID: 14731525
The GTPase superfamily: conserved structure and molecular mechanism.
Bourne HR, Sanders DA, McCormick F., Nature 349(6305), 1991
PMID: 1898771
Molecular characterization of tobacco cDNAs encoding two small GTP-binding proteins.
Dallmann G, Sticher L, Marshallsay C, Nagy F., Plant Mol. Biol. 19(5), 1992
PMID: 1643285
Time Course of mRNA Induction Elicited by Salt Stress in the Common Ice Plant (Mesembryanthemum crystallinum).
Michalowski CB, Olson SW, Piepenbrock M, Schmitt JM, Bohnert HJ., Plant Physiol. 89(3), 1989
PMID: 16666626
Age-dependent induction of pyruvate, orthophosphate dikinase in Mesembryanthemum crystallinum L.
Fisslthaler B, Meyer G, Bohnert HJ, Schmitt JM., Planta 196(3), 1995
PMID: 7647683
Proteins regulating Ras and its relatives.
Boguski MS, McCormick F., Nature 366(6456), 1993
PMID: 8259209
GTP-binding proteins in plants.
Terryn N, Van Montagu M, Inze D., Plant Mol. Biol. 22(1), 1993
PMID: 8499613
Tomato Rab1A homologs as molecular tools for studying Rab geranylgeranyl transferase in plant cells.
Loraine AE, Yalovsky S, Fabry S, Gruissem W., Plant Physiol. 110(4), 1996
PMID: 8934628
The effector interactions of p21ras.
Marshall MS., Trends Biochem. Sci. 18(7), 1993
PMID: 8212134
Characterization of the Oligogalacturonide-Induced Oxidative Burst in Cultured Soybean (Glycine max) Cells.
Legendre L, Rueter S, Heinstein PF, Low PS., Plant Physiol. 102(1), 1993
PMID: 12231814
Hypervariable C-terminal domain of rab proteins acts as a targeting signal.
Chavrier P, Gorvel JP, Stelzer E, Simons K, Gruenberg J, Zerial M., Nature 353(6346), 1991
PMID: 1944536
Gapped BLAST and PSI-BLAST: a new generation of protein database search programs.
Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ., Nucleic Acids Res. 25(17), 1997
PMID: 9254694
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 10890538
PubMed | Europe PMC

Suchen in

Google Scholar