Transgenic tobacco plants that express an antisense construct derived from a Medicago sativa cDNA encoding a rac-related small GTP-binding protein fail to develop necrotic lesions upon elicitor infiltration
Schiene K, Pühler A, Niehaus K (2000)
MOLECULAR AND GENERAL GENETICS 263(5): 761-770.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Abstract / Bemerkung
Using an RT-PCR approach a vac-related cDNA clone, designated Ms-rac1, was isolated from Medicago sativa (alfalfa). Ms-rac1 encodes a putative protein of 197 amino acids, which is closely related to known Rac-related GTP-binding proteins from Pisum sativum and Arabidopsis thaliana. RT-PCR analysis demonstrated that Ms-rac1 is ubiquitously expressed in various tissues in alfalfa. Expression of Ms-rac1 in suspension cultures occurred independently of treatment with elicitor, indicating that it is constitutively expressed. Heterologous expression of an antisense Ms-rac1 cDNA construct in transgenic tobacco plants was associated with poor growth and retarded flowering. Following infiltration with yeast elicitor, transgenic tobacco plants transformed with either the empty vector or Ms-rac1 in sense orientation developed brown necrotic lesions and subsequently cell death was observed within the infiltrated tissues. In contrast, the majority of the antisense transformants neither formed necrotic lesions nor showed any other visible defence reactions, demonstrating that Rac-related GTPases play an important role in the establishment of plant defence reactions.
Stichworte
yeast elicitor;
protein;
rac-related;
plant defence;
GTP-binding protein;
Medicago sativa
Erscheinungsjahr
2000
Zeitschriftentitel
MOLECULAR AND GENERAL GENETICS
Band
263
Ausgabe
5
Seite(n)
761-770
ISSN
0026-8925
eISSN
1432-1874
Page URI
https://pub.uni-bielefeld.de/record/1619538
Zitieren
Schiene K, Pühler A, Niehaus K. Transgenic tobacco plants that express an antisense construct derived from a Medicago sativa cDNA encoding a rac-related small GTP-binding protein fail to develop necrotic lesions upon elicitor infiltration. MOLECULAR AND GENERAL GENETICS. 2000;263(5):761-770.
Schiene, K., Pühler, A., & Niehaus, K. (2000). Transgenic tobacco plants that express an antisense construct derived from a Medicago sativa cDNA encoding a rac-related small GTP-binding protein fail to develop necrotic lesions upon elicitor infiltration. MOLECULAR AND GENERAL GENETICS, 263(5), 761-770. https://doi.org/10.1007/s004380000248
Schiene, K, Pühler, Alfred, and Niehaus, Karsten. 2000. “Transgenic tobacco plants that express an antisense construct derived from a Medicago sativa cDNA encoding a rac-related small GTP-binding protein fail to develop necrotic lesions upon elicitor infiltration”. MOLECULAR AND GENERAL GENETICS 263 (5): 761-770.
Schiene, K., Pühler, A., and Niehaus, K. (2000). Transgenic tobacco plants that express an antisense construct derived from a Medicago sativa cDNA encoding a rac-related small GTP-binding protein fail to develop necrotic lesions upon elicitor infiltration. MOLECULAR AND GENERAL GENETICS 263, 761-770.
Schiene, K., Pühler, A., & Niehaus, K., 2000. Transgenic tobacco plants that express an antisense construct derived from a Medicago sativa cDNA encoding a rac-related small GTP-binding protein fail to develop necrotic lesions upon elicitor infiltration. MOLECULAR AND GENERAL GENETICS, 263(5), p 761-770.
K. Schiene, A. Pühler, and K. Niehaus, “Transgenic tobacco plants that express an antisense construct derived from a Medicago sativa cDNA encoding a rac-related small GTP-binding protein fail to develop necrotic lesions upon elicitor infiltration”, MOLECULAR AND GENERAL GENETICS, vol. 263, 2000, pp. 761-770.
Schiene, K., Pühler, A., Niehaus, K.: Transgenic tobacco plants that express an antisense construct derived from a Medicago sativa cDNA encoding a rac-related small GTP-binding protein fail to develop necrotic lesions upon elicitor infiltration. MOLECULAR AND GENERAL GENETICS. 263, 761-770 (2000).
Schiene, K, Pühler, Alfred, and Niehaus, Karsten. “Transgenic tobacco plants that express an antisense construct derived from a Medicago sativa cDNA encoding a rac-related small GTP-binding protein fail to develop necrotic lesions upon elicitor infiltration”. MOLECULAR AND GENERAL GENETICS 263.5 (2000): 761-770.
Daten bereitgestellt von European Bioinformatics Institute (EBI)
24 Zitationen in Europe PMC
Daten bereitgestellt von Europe PubMed Central.
The alternative Medicago truncatula defense proteome of ROS-defective transgenic roots during early microbial infection.
Kiirika LM, Schmitz U, Colditz F., Front Plant Sci 5(), 2014
PMID: 25101099
Kiirika LM, Schmitz U, Colditz F., Front Plant Sci 5(), 2014
PMID: 25101099
AtROP1 negatively regulates potato resistance to Phytophthora infestans via NADPH oxidase-mediated accumulation of H2O2.
Zhang Z, Yang F, Na R, Zhang X, Yang S, Gao J, Fan M, Zhao Y, Zhao J., BMC Plant Biol 14(), 2014
PMID: 25547733
Zhang Z, Yang F, Na R, Zhang X, Yang S, Gao J, Fan M, Zhao Y, Zhao J., BMC Plant Biol 14(), 2014
PMID: 25547733
Silencing of the Rac1 GTPase MtROP9 in Medicago truncatula stimulates early mycorrhizal and oomycete root colonizations but negatively affects rhizobial infection.
Kiirika LM, Bergmann HF, Schikowsky C, Wimmer D, Korte J, Schmitz U, Niehaus K, Colditz F., Plant Physiol 159(1), 2012
PMID: 22399646
Kiirika LM, Bergmann HF, Schikowsky C, Wimmer D, Korte J, Schmitz U, Niehaus K, Colditz F., Plant Physiol 159(1), 2012
PMID: 22399646
The Hop/Sti1-Hsp90 chaperone complex facilitates the maturation and transport of a PAMP receptor in rice innate immunity.
Chen L, Hamada S, Fujiwara M, Zhu T, Thao NP, Wong HL, Krishna P, Ueda T, Kaku H, Shibuya N, Kawasaki T, Shimamoto K., Cell Host Microbe 7(3), 2010
PMID: 20227662
Chen L, Hamada S, Fujiwara M, Zhu T, Thao NP, Wong HL, Krishna P, Ueda T, Kaku H, Shibuya N, Kawasaki T, Shimamoto K., Cell Host Microbe 7(3), 2010
PMID: 20227662
Analysis of the Rac/Rop small GTPase family in rice: expression, subcellular localization and role in disease resistance.
Chen L, Shiotani K, Togashi T, Miki D, Aoyama M, Wong HL, Kawasaki T, Shimamoto K., Plant Cell Physiol 51(4), 2010
PMID: 20203239
Chen L, Shiotani K, Togashi T, Miki D, Aoyama M, Wong HL, Kawasaki T, Shimamoto K., Plant Cell Physiol 51(4), 2010
PMID: 20203239
Constitutively activated barley ROPs modulate epidermal cell size, defense reactions and interactions with fungal leaf pathogens.
Pathuri IP, Zellerhoff N, Schaffrath U, Hensel G, Kumlehn J, Kogel KH, Eichmann R, Hückelhoven R., Plant Cell Rep 27(12), 2008
PMID: 18784924
Pathuri IP, Zellerhoff N, Schaffrath U, Hensel G, Kumlehn J, Kogel KH, Eichmann R, Hückelhoven R., Plant Cell Rep 27(12), 2008
PMID: 18784924
Brassica napus Rop GTPases and their expression in microspore cultures.
Chan J, Peter Pauls K., Planta 225(2), 2007
PMID: 16896789
Chan J, Peter Pauls K., Planta 225(2), 2007
PMID: 16896789
Cinnamoyl-CoA reductase, a key enzyme in lignin biosynthesis, is an effector of small GTPase Rac in defense signaling in rice.
Kawasaki T, Koita H, Nakatsubo T, Hasegawa K, Wakabayashi K, Takahashi H, Umemura K, Umezawa T, Shimamoto K., Proc Natl Acad Sci U S A 103(1), 2006
PMID: 16380417
Kawasaki T, Koita H, Nakatsubo T, Hasegawa K, Wakabayashi K, Takahashi H, Umemura K, Umezawa T, Shimamoto K., Proc Natl Acad Sci U S A 103(1), 2006
PMID: 16380417
Rice GTPase OsRacB: potential accessory factor in plant salt-stress signaling.
Luo M, Gu SH, Zhao SH, Zhang F, Wu NH., Acta Biochim Biophys Sin (Shanghai) 38(6), 2006
PMID: 16761097
Luo M, Gu SH, Zhao SH, Zhang F, Wu NH., Acta Biochim Biophys Sin (Shanghai) 38(6), 2006
PMID: 16761097
Involvement of the small GTPase Rac in the defense responses of tobacco to pathogens.
Moeder W, Yoshioka K, Klessig DF., Mol Plant Microbe Interact 18(2), 2005
PMID: 15720080
Moeder W, Yoshioka K, Klessig DF., Mol Plant Microbe Interact 18(2), 2005
PMID: 15720080
Molecular cloning and characterisation of a Rab-binding GDP-dissociation inhibitor from Medicago truncatula.
Yaneva IA, Niehaus K., Plant Physiol Biochem 43(3), 2005
PMID: 15854828
Yaneva IA, Niehaus K., Plant Physiol Biochem 43(3), 2005
PMID: 15854828
A Rab-related small GTP binding protein is predominantly expressed in root nodules of Medicago sativa.
Schiene K, Donath S, Brecht M, Pühler A, Niehaus K., Mol Genet Genomics 272(1), 2004
PMID: 15221459
Schiene K, Donath S, Brecht M, Pühler A, Niehaus K., Mol Genet Genomics 272(1), 2004
PMID: 15221459
Down-regulation of metallothionein, a reactive oxygen scavenger, by the small GTPase OsRac1 in rice.
Wong HL, Sakamoto T, Kawasaki T, Umemura K, Shimamoto K., Plant Physiol 135(3), 2004
PMID: 15220467
Wong HL, Sakamoto T, Kawasaki T, Umemura K, Shimamoto K., Plant Physiol 135(3), 2004
PMID: 15220467
The use of surface plasmon resonance (SPR) and fluorescence resonance energy transfer (FRET) to monitor the interaction of the plant G-proteins Ms-Rac1 and Ms-Rac4 with GTP.
Brecht M, Sewald K, Schiene K, Keen G, Fricke M, Sauer M, Niehaus K., J Biotechnol 112(1-2), 2004
PMID: 15288950
Brecht M, Sewald K, Schiene K, Keen G, Fricke M, Sauer M, Niehaus K., J Biotechnol 112(1-2), 2004
PMID: 15288950
Cloning and expression analysis of cDNAs corresponding to genes activated in cucumber showing systemic acquired resistance after BTH treatment.
Bovie C, Ongena M, Thonart P, Dommes J., BMC Plant Biol 4(), 2004
PMID: 15331019
Bovie C, Ongena M, Thonart P, Dommes J., BMC Plant Biol 4(), 2004
PMID: 15331019
ROP/RAC GTPase: an old new master regulator for plant signaling.
Gu Y, Wang Z, Yang Z., Curr Opin Plant Biol 7(5), 2004
PMID: 15337095
Gu Y, Wang Z, Yang Z., Curr Opin Plant Biol 7(5), 2004
PMID: 15337095
Ethylene regulates monomeric GTP-binding protein gene expression and activity in Arabidopsis.
Moshkov IE, Mur LA, Novikova GV, Smith AR, Hall MA., Plant Physiol 131(4), 2003
PMID: 12692329
Moshkov IE, Mur LA, Novikova GV, Smith AR, Hall MA., Plant Physiol 131(4), 2003
PMID: 12692329
Ethylene rapidly up-regulates the activities of both monomeric GTP-binding proteins and protein kinase(s) in epicotyls of pea.
Moshkov IE, Novikova GV, Mur LA, Smith AR, Hall MA., Plant Physiol 131(4), 2003
PMID: 12692330
Moshkov IE, Novikova GV, Mur LA, Smith AR, Hall MA., Plant Physiol 131(4), 2003
PMID: 12692330
Small GTPase 'Rop': molecular switch for plant defense responses.
Agrawal GK, Iwahashi H, Rakwal R., FEBS Lett 546(2-3), 2003
PMID: 12832035
Agrawal GK, Iwahashi H, Rakwal R., FEBS Lett 546(2-3), 2003
PMID: 12832035
Rice as a model for comparative genomics of plants.
Shimamoto K, Kyozuka J., Annu Rev Plant Biol 53(), 2002
PMID: 12221982
Shimamoto K, Kyozuka J., Annu Rev Plant Biol 53(), 2002
PMID: 12221982
A cell-specific, prenylation-independent mechanism regulates targeting of type II RACs.
Lavy M, Bracha-Drori K, Sternberg H, Yalovsky S., Plant Cell 14(10), 2002
PMID: 12368496
Lavy M, Bracha-Drori K, Sternberg H, Yalovsky S., Plant Cell 14(10), 2002
PMID: 12368496
Arabidopsis thaliana Rop GTPases are localized to tips of root hairs and control polar growth.
Molendijk AJ, Bischoff F, Rajendrakumar CS, Friml J, Braun M, Gilroy S, Palme K., EMBO J 20(11), 2001
PMID: 11387211
Molendijk AJ, Bischoff F, Rajendrakumar CS, Friml J, Braun M, Gilroy S, Palme K., EMBO J 20(11), 2001
PMID: 11387211
The Rop GTPase switch controls multiple developmental processes in Arabidopsis.
Li H, Shen JJ, Zheng ZL, Lin Y, Yang Z., Plant Physiol 126(2), 2001
PMID: 11402196
Li H, Shen JJ, Zheng ZL, Lin Y, Yang Z., Plant Physiol 126(2), 2001
PMID: 11402196
VIP1, an Arabidopsis protein that interacts with Agrobacterium VirE2, is involved in VirE2 nuclear import and Agrobacterium infectivity.
Tzfira T, Vaidya M, Citovsky V., EMBO J 20(13), 2001
PMID: 11432846
Tzfira T, Vaidya M, Citovsky V., EMBO J 20(13), 2001
PMID: 11432846
References
Daten bereitgestellt von Europe PubMed Central.
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
PMID: 10905344
PubMed | Europe PMC
Suchen in