Antisense suppression of 2-cysteine peroxiredoxin in arabidopsis specifically enhances the activities and expression of enzymes associated with ascorbate metabolism but not glutathione metabolism

Baier M, Noctor G, Foyer CH, Dietz K-J (2000)
PLANT PHYSIOLOGY 124(2): 823-832.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Baier, M; Noctor, G; Foyer, CH; Dietz, Karl-JosefUniBi
Abstract / Bemerkung
The aim of this study was to characterize the effect of decreased 2-cysteine peroxiredoxin (2-CP) on the leaf anti-oxidative system in Arabidopsis. At three stages of leaf development, two lines of transgenic Arabidopsis mutants with decreased contents of chloroplast 2-CP were compared with wild ty-pe and a control line transformed with an empty vector. Glutathione contents and redox state were similar in all plants, and no changes in transcript levels for enzymes involved in glutathione metabolism were observed. Transcript levels for chloroplastic glutathione peroxidase were much lower than those for 2-CP, and both cytosolic and chloroplastic glutathione peroxidase were not increased in the mutants. In contrast, the foliar ascorbate pool was more oxidized in the mutants, although the difference decreased with plant age. The activities of thylakoid and stromal ascorbate peroxidase and particularly monodehydroascorbate reductase were increased as were transcripts for these enzymes. No change in dehydroascorbate reductase activity was observed, and effects on transcript abundance for glutathione reductase, catalase, and superoxide dismutase were slight or absent. The results demonstrate that 2-CP forms an integral part of the anti-oxidant network of chloroplasts and is functionally interconnected with other defense systems. Suppression of 2-CP leads to increased expression of other anti-oxidative genes possibly mediated by increased oxidation state of the leaf ascorbate pool.
Erscheinungsjahr
2000
Zeitschriftentitel
PLANT PHYSIOLOGY
Band
124
Ausgabe
2
Seite(n)
823-832
ISSN
0032-0889
eISSN
1532-2548
Page URI
https://pub.uni-bielefeld.de/record/1618785

Zitieren

Baier M, Noctor G, Foyer CH, Dietz K-J. Antisense suppression of 2-cysteine peroxiredoxin in arabidopsis specifically enhances the activities and expression of enzymes associated with ascorbate metabolism but not glutathione metabolism. PLANT PHYSIOLOGY. 2000;124(2):823-832.
Baier, M., Noctor, G., Foyer, C. H., & Dietz, K. - J. (2000). Antisense suppression of 2-cysteine peroxiredoxin in arabidopsis specifically enhances the activities and expression of enzymes associated with ascorbate metabolism but not glutathione metabolism. PLANT PHYSIOLOGY, 124(2), 823-832. https://doi.org/10.1104/pp.124.2.823
Baier, M, Noctor, G, Foyer, CH, and Dietz, Karl-Josef. 2000. “Antisense suppression of 2-cysteine peroxiredoxin in arabidopsis specifically enhances the activities and expression of enzymes associated with ascorbate metabolism but not glutathione metabolism”. PLANT PHYSIOLOGY 124 (2): 823-832.
Baier, M., Noctor, G., Foyer, C. H., and Dietz, K. - J. (2000). Antisense suppression of 2-cysteine peroxiredoxin in arabidopsis specifically enhances the activities and expression of enzymes associated with ascorbate metabolism but not glutathione metabolism. PLANT PHYSIOLOGY 124, 823-832.
Baier, M., et al., 2000. Antisense suppression of 2-cysteine peroxiredoxin in arabidopsis specifically enhances the activities and expression of enzymes associated with ascorbate metabolism but not glutathione metabolism. PLANT PHYSIOLOGY, 124(2), p 823-832.
M. Baier, et al., “Antisense suppression of 2-cysteine peroxiredoxin in arabidopsis specifically enhances the activities and expression of enzymes associated with ascorbate metabolism but not glutathione metabolism”, PLANT PHYSIOLOGY, vol. 124, 2000, pp. 823-832.
Baier, M., Noctor, G., Foyer, C.H., Dietz, K.-J.: Antisense suppression of 2-cysteine peroxiredoxin in arabidopsis specifically enhances the activities and expression of enzymes associated with ascorbate metabolism but not glutathione metabolism. PLANT PHYSIOLOGY. 124, 823-832 (2000).
Baier, M, Noctor, G, Foyer, CH, and Dietz, Karl-Josef. “Antisense suppression of 2-cysteine peroxiredoxin in arabidopsis specifically enhances the activities and expression of enzymes associated with ascorbate metabolism but not glutathione metabolism”. PLANT PHYSIOLOGY 124.2 (2000): 823-832.

88 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Reactive oxygen species and redox regulation in mesophyll and bundle sheath cells of C4 plants.
Turkan I, Uzilday B, Dietz KJ, Bräutigam A, Ozgur R., J Exp Bot 69(14), 2018
PMID: 29529246
The chloroplast 2-cysteine peroxiredoxin functions as thioredoxin oxidase in redox regulation of chloroplast metabolism.
Vaseghi MJ, Chibani K, Telman W, Liebthal MF, Gerken M, Schnitzer H, Mueller SM, Dietz KJ., Elife 7(), 2018
PMID: 30311601
The Plant Immunity Regulating F-Box Protein CPR1 Supports Plastid Function in Absence of Pathogens.
Hedtmann C, Guo W, Reifschneider E, Heiber I, Hiltscher H, van Buer J, Barsch A, Niehaus K, Rowan B, Lortzing T, Steppuhn A, Baier M., Front Plant Sci 8(), 2017
PMID: 29018463
Regions of the bread wheat D genome associated with variation in key photosynthesis traits and shoot biomass under both well watered and water deficient conditions.
Osipova S, Permyakov A, Permyakova M, Pshenichnikova T, Verkhoturov V, Rudikovsky A, Rudikovskaya E, Shishparenok A, Doroshkov A, Börner A., J Appl Genet 57(2), 2016
PMID: 26374127
Interactions between 2-Cys peroxiredoxins and ascorbate in autophagosome formation during the heat stress response in Solanum lycopersicum.
Cheng F, Yin LL, Zhou J, Xia XJ, Shi K, Yu JQ, Zhou YH, Foyer CH., J Exp Bot 67(6), 2016
PMID: 26834179
Selective silencing of 2Cys and type-IIB Peroxiredoxins discloses their roles in cell redox state and stress signaling.
Vidigal P, Martin-Hernandez AM, Guiu-Aragonés C, Amâncio S, Carvalho L., J Integr Plant Biol 57(6), 2015
PMID: 25319151
Site-directed mutagenesis substituting cysteine for serine in 2-Cys peroxiredoxin (2-Cys Prx A) of Arabidopsis thaliana effectively improves its peroxidase and chaperone functions.
Lee EM, Lee SS, Tripathi BN, Jung HS, Cao GP, Lee Y, Singh S, Hong SH, Lee KW, Lee SY, Cho JY, Chung BY., Ann Bot 116(4), 2015
PMID: 26141131
Genetic control of functional traits related to photosynthesis and water use efficiency in Pinus pinaster Ait. drought response: integration of genome annotation, allele association and QTL detection for candidate gene identification.
de Miguel M, Cabezas JA, de María N, Sánchez-Gómez D, Guevara MÁ, Vélez MD, Sáez-Laguna E, Díaz LM, Mancha JA, Barbero MC, Collada C, Díaz-Sala C, Aranda I, Cervera MT., BMC Genomics 15(), 2014
PMID: 24919981
The radical induced cell death protein 1 (RCD1) supports transcriptional activation of genes for chloroplast antioxidant enzymes.
Hiltscher H, Rudnik R, Shaikhali J, Heiber I, Mellenthin M, Meirelles Duarte I, Schuster G, Kahmann U, Baier M., Front Plant Sci 5(), 2014
PMID: 25295044
Tuning of peroxiredoxin catalysis for various physiological roles.
Perkins A, Poole LB, Karplus PA., Biochemistry 53(49), 2014
PMID: 25403613
Ascorbate as seen through plant evolution: the rise of a successful molecule?
Gest N, Gautier H, Stevens R., J Exp Bot 64(1), 2013
PMID: 23109712
Reactive oxygen species signaling in plants under abiotic stress.
Choudhury S, Panda P, Sahoo L, Panda SK., Plant Signal Behav 8(4), 2013
PMID: 23425848
Overoxidation of chloroplast 2-Cys peroxiredoxins: balancing toxic and signaling activities of hydrogen peroxide.
Puerto-Galán L, Pérez-Ruiz JM, Ferrández J, Cano B, Naranjo B, Nájera VA, González M, Lindahl AM, Cejudo FJ., Front Plant Sci 4(), 2013
PMID: 23967002
The function of the NADPH thioredoxin reductase C-2-Cys peroxiredoxin system in plastid redox regulation and signalling.
Cejudo FJ, Ferrández J, Cano B, Puerto-Galán L, Guinea M., FEBS Lett 586(18), 2012
PMID: 22796111
ROS homeostasis during development: an evolutionary conserved strategy.
Schippers JH, Nguyen HM, Lu D, Schmidt R, Mueller-Roeber B., Cell Mol Life Sci 69(19), 2012
PMID: 22842779
Plant physiology and proteomics reveals the leaf response to drought in alfalfa (Medicago sativa L.).
Aranjuelo I, Molero G, Erice G, Avice JC, Nogués S., J Exp Bot 62(1), 2011
PMID: 20797998
The dual-targeted plant sulfiredoxin retroreduces the sulfinic form of atypical mitochondrial peroxiredoxin.
Iglesias-Baena I, Barranco-Medina S, Sevilla F, Lázaro JJ., Plant Physiol 155(2), 2011
PMID: 21139087
Peroxiredoxins in plants and cyanobacteria.
Dietz KJ., Antioxid Redox Signal 15(4), 2011
PMID: 21194355
Ascorbate regulation of 2-Cys peroxiredoxin-A promoter activity is light-dependent.
Shaikhali J, Baier M., J Plant Physiol 167(6), 2010
PMID: 20022402
Characterization of plant sulfiredoxin and role of sulphinic form of 2-Cys peroxiredoxin.
Iglesias-Baena I, Barranco-Medina S, Lázaro-Payo A, López-Jaramillo FJ, Sevilla F, Lázaro JJ., J Exp Bot 61(5), 2010
PMID: 20176891
Functional analysis of the pathways for 2-Cys peroxiredoxin reduction in Arabidopsis thaliana chloroplasts.
Pulido P, Spínola MC, Kirchsteiger K, Guinea M, Pascual MB, Sahrawy M, Sandalio LM, Dietz KJ, González M, Cejudo FJ., J Exp Bot 61(14), 2010
PMID: 20616155
Inactivation of genes, encoding tocopherol biosynthetic pathway enzymes, results in oxidative stress in outdoor grown Arabidopsis thaliana.
Semchuk NM, Lushchak OV, Falk J, Krupinska K, Lushchak VI., Plant Physiol Biochem 47(5), 2009
PMID: 19264498
Oligomerization and chaperone activity of a plant 2-Cys peroxiredoxin in response to oxidative stress
Kim SunYoung, Jang HoHee, Lee JungRo, Sung NuRi, Lee HaeBin, Lee DeokHo, Park Dong-Jin, Kang ChangHo, Chung WooSik, Lim ChaeOh, Yun Dae-Jin, Kim WoeYeon, Lee KyunOh, Lee SangYeol., Plant Sci 177(3), 2009
PMID: IND44223663
Multiple redox and non-redox interactions define 2-Cys peroxiredoxin as a regulatory hub in the chloroplast.
Muthuramalingam M, Seidel T, Laxa M, Nunes de Miranda SM, Gärtner F, Ströher E, Kandlbinder A, Dietz KJ., Mol Plant 2(6), 2009
PMID: 19995730
Glutaredoxins and thioredoxins in plants.
Meyer Y, Siala W, Bashandy T, Riondet C, Vignols F, Reichheld JP., Biochim Biophys Acta 1783(4), 2008
PMID: 18047840
Binary reducing equivalent pathways using NADPH-thioredoxin reductase and ferredoxin-thioredoxin reductase in the cyanobacterium Synechocystis sp. strain PCC 6803.
Hishiya S, Hatakeyama W, Mizota Y, Hosoya-Matsuda N, Motohashi K, Ikeuchi M, Hisabori T., Plant Cell Physiol 49(1), 2008
PMID: 18003670
Decrease in manganese superoxide dismutase leads to reduced root growth and affects tricarboxylic acid cycle flux and mitochondrial redox homeostasis.
Morgan MJ, Lehmann M, Schwarzländer M, Baxter CJ, Sienkiewicz-Porzucek A, Williams TC, Schauer N, Fernie AR, Fricker MD, Ratcliffe RG, Sweetlove LJ, Finkemeier I., Plant Physiol 147(1), 2008
PMID: 18337490
The redox-sensitive transcription factor Rap2.4a controls nuclear expression of 2-Cys peroxiredoxin A and other chloroplast antioxidant enzymes.
Shaikhali J, Heiber I, Seidel T, Ströher E, Hiltscher H, Birkmann S, Dietz KJ, Baier M., BMC Plant Biol 8(), 2008
PMID: 18439303
Reactive oxygen signaling and abiotic stress.
Miller G, Shulaev V, Mittler R., Physiol Plant 133(3), 2008
PMID: 18346071
Functional analysis and expression characteristics of chloroplastic Prx IIE.
Gama F, Bréhélin C, Gelhaye E, Meyer Y, Jacquot JP, Rey P, Rouhier N., Physiol Plant 133(3), 2008
PMID: 18422870
Redox signal integration: from stimulus to networks and genes.
Dietz KJ., Physiol Plant 133(3), 2008
PMID: 18429942
Reactive oxygen signaling and abiotic stress
Miller G, Shulaev V, Mittler R., Physiol Plant 133(3), 2008
PMID: IND44069754
Functional analysis and expression characteristics of chloroplastic Prx IIE
Gama F, Bréhélin C, Gelhaye E, Meyer Y, Jacquot JP, Rey P, Rouhier N., Physiol Plant 133(3), 2008
PMID: IND44069763
Towards identifying Brassica proteins involved in mediating resistance to Leptosphaeria maculans: a proteomics-based approach.
Sharma N, Hotte N, Rahman MH, Mohammadi M, Deyholos MK, Kav NN., Proteomics 8(17), 2008
PMID: 18668695
Identification of expressed sequence tags in an alkali grass (Puccinellia tenuiflora) cDNA library.
Wang Y, Chu Y, Liu G, Wang MH, Jiang J, Hou Y, Qu G, Yang C., J Plant Physiol 164(1), 2007
PMID: 16545489
Redox regulation and antioxidative defence in Arabidopsis leaves viewed from a systems biology perspective.
Wormuth D, Heiber I, Shaikali J, Kandlbinder A, Baier M, Dietz KJ., J Biotechnol 129(2), 2007
PMID: 17207878
The Arabidopsis thaliana sulfiredoxin is a plastidic cysteine-sulfinic acid reductase involved in the photooxidative stress response.
Rey P, Bécuwe N, Barrault MB, Rumeau D, Havaux M, Biteau B, Toledano MB., Plant J 49(3), 2007
PMID: 17217469
The redox imbalanced mutants of Arabidopsis differentiate signaling pathways for redox regulation of chloroplast antioxidant enzymes.
Heiber I, Ströher E, Raatz B, Busse I, Kahmann U, Bevan MW, Dietz KJ, Baier M., Plant Physiol 143(4), 2007
PMID: 17337533
Metabolic engineering of plant L-ascorbic acid biosynthesis: recent trends and applications.
Zhang L, Wang Z, Xia Y, Kai G, Chen W, Tang K., Crit Rev Biotechnol 27(3), 2007
PMID: 17849260
Peroxiredoxin Q of Arabidopsis thaliana is attached to the thylakoids and functions in context of photosynthesis.
Lamkemeyer P, Laxa M, Collin V, Li W, Finkemeier I, Schöttler MA, Holtkamp V, Tognetti VB, Issakidis-Bourguet E, Kandlbinder A, Weis E, Miginiac-Maslow M, Dietz KJ., Plant J 45(6), 2006
PMID: 16507087
Functional replacement of ferredoxin by a cyanobacterial flavodoxin in tobacco confers broad-range stress tolerance.
Tognetti VB, Palatnik JF, Fillat MF, Melzer M, Hajirezaei MR, Valle EM, Carrillo N., Plant Cell 18(8), 2006
PMID: 16829589
The C-type Arabidopsis thioredoxin reductase ANTR-C acts as an electron donor to 2-Cys peroxiredoxins in chloroplasts.
Moon JC, Jang HH, Chae HB, Lee JR, Lee SY, Jung YJ, Shin MR, Lim HS, Chung WS, Yun DJ, Lee KO, Lee SY., Biochem Biophys Res Commun 348(2), 2006
PMID: 16884685
Rice NTRC is a high-efficiency redox system for chloroplast protection against oxidative damage.
Pérez-Ruiz JM, Spínola MC, Kirchsteiger K, Moreno J, Sahrawy M, Cejudo FJ., Plant Cell 18(9), 2006
PMID: 16891402
Regulation of gene expression by photosynthetic signals triggered through modified CO2 availability.
Wormuth D, Baier M, Kandlbinder A, Scheibe R, Hartung W, Dietz KJ., BMC Plant Biol 6(), 2006
PMID: 16916444
Thioredoxins in Arabidopsis and other plants.
Meyer Y, Reichheld JP, Vignols F., Photosynth Res 86(3), 2005
PMID: 16307307
Response of ascorbate peroxidase isoenzymes and ascorbate regeneration system to abiotic stresses in Cucumis sativus L.
Song XS, Hu WH, Mao WH, Ogweno JO, Zhou YH, Yu JQ., Plant Physiol Biochem 43(12), 2005
PMID: 16386429
Characterization of mutants in Arabidopsis showing increased sugar-specific gene expression, growth, and developmental responses.
Baier M, Hemmann G, Holman R, Corke F, Card R, Smith C, Rook F, Bevan MW., Plant Physiol 134(1), 2004
PMID: 14684841
Cadmium toxicity to barley (Hordeum vulgare) as affected by varying Fe nutritional status.
Sharma SS, Kaul S, Metwally A, Goyal KC, Finkemeier I, Dietz KJ., Plant Sci 166(5), 2004
PMID: IND43633715
Specific changes in the Arabidopsis proteome in response to bacterial challenge: differentiating basal and R-gene mediated resistance.
Jones AM, Thomas V, Truman B, Lilley K, Mansfield J, Grant M., Phytochemistry 65(12), 2004
PMID: 15276439
Reactive oxygen gene network of plants.
Mittler R, Vanderauwera S, Gollery M, Van Breusegem F., Trends Plant Sci 9(10), 2004
PMID: 15465684
Plant peroxiredoxins.
Dietz KJ., Annu Rev Plant Biol 54(), 2003
PMID: 14502986
Divergent light-, ascorbate-, and oxidative stress-dependent regulation of expression of the peroxiredoxin gene family in Arabidopsis.
Horling F, Lamkemeyer P, König J, Finkemeier I, Kandlbinder A, Baier M, Dietz KJ., Plant Physiol 131(1), 2003
PMID: 12529539
Lessons from redox signaling in plants.
Foyer CH, Allen JF., Antioxid Redox Signal 5(1), 2003
PMID: 12626111
Isolation and characterization of a thioredoxin-dependent peroxidase from Chlamydomonas reinhardtii.
Goyer A, Haslekås C, Miginiac-Maslow M, Klein U, Le Marechal P, Jacquot JP, Decottignies P., Eur J Biochem 269(1), 2002
PMID: 11784321
Central functions of the lumenal and peripheral thylakoid proteome of Arabidopsis determined by experimentation and genome-wide prediction.
Peltier JB, Emanuelsson O, Kalume DE, Ytterberg J, Friso G, Rudella A, Liberles DA, Söderberg L, Roepstorff P, von Heijne G, van Wijk KJ., Plant Cell 14(1), 2002
PMID: 11826309
Plant peroxiredoxins: alternative hydroperoxide scavenging enzymes.
Rouhier N, Jacquot JP., Photosynth Res 74(3), 2002
PMID: 16245137
Peroxiredoxins.
Hofmann B, Hecht HJ, Flohé L., Biol Chem 383(3-4), 2002
PMID: 12033427
Thioredoxins and related proteins in photosynthetic organisms: molecular basis for thiol dependent regulation.
Jacquot JP, Gelhaye E, Rouhier N, Corbier C, Didierjean C, Aubry A., Biochem Pharmacol 64(5-6), 2002
PMID: 12213606
Isolation and characterization of a new peroxiredoxin from poplar sieve tubes that uses either glutaredoxin or thioredoxin as a proton donor.
Rouhier N, Gelhaye E, Sautiere PE, Brun A, Laurent P, Tagu D, Gerard J, de Faÿ E, Meyer Y, Jacquot JP., Plant Physiol 127(3), 2001
PMID: 11706208

27 References

Daten bereitgestellt von Europe PubMed Central.

The presence of dehydroascorbate and dehydroascorbate reductase in plant tissues.
Foyer CH, Mullineaux PM., FEBS Lett. 425(3), 1998
PMID: 9563527
Expression of Arabidopsis cytosolic ascorbate peroxidase gene in response to ozone or sulfur dioxide.
Kubo A, Saji H, Tanaka K, Kondo N., Plant Mol. Biol. 29(3), 1995
PMID: 8534847
Soluble ascorbate peroxidase: detection in plants and use in vitamim C estimation.
Kelly GJ, Latzko E., Naturwissenschaften 66(12), 1979
PMID: 537642
Thioredoxin peroxidase in the Cyanobacterium Synechocystis sp. PCC 6803.
Yamamoto H, Miyake C, Dietz KJ, Tomizawa K, Murata N, Yokota A., FEBS Lett. 447(2-3), 1999
PMID: 10214959
Identification of cDNAS encoding plastid-targeted glutathione peroxidase.
Mullineaux PM, Karpinski S, Jimenez A, Cleary SP, Robinson C, Creissen GP., Plant J. 13(3), 1998
PMID: 9680987
Systemic signaling and acclimation in response to excess excitation energy in Arabidopsis.
Karpinski S, Reynolds H, Karpinska B, Wingsle G, Creissen G, Mullineaux P., Science 284(5414), 1999
PMID: 10213690
ASCORBATE AND GLUTATHIONE: Keeping Active Oxygen Under Control.
Noctor G, Foyer CH., Annu. Rev. Plant Physiol. Plant Mol. Biol. 49(), 1998
PMID: 15012235
Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein).
McCord JM, Fridovich I., J. Biol. Chem. 244(22), 1969
PMID: 5389100
Glutathione causes a massive and selective induction of plant defense genes.
Wingate VP, Lawton MA, Lamb CJ., Plant Physiol. 87(1), 1988
PMID: 16666104
Redox-activated expression of the cytosolic copper/zinc superoxide dismutase gene in Nicotiana.
Herouart D, Van Montagu M, Inze D., Proc. Natl. Acad. Sci. U.S.A. 90(7), 1993
PMID: 8464930
Ozone, Sulfur Dioxide, and Ultraviolet B Have Similar Effects on mRNA Accumulation of Antioxidant Genes in Nicotiana plumbaginifolia L.
Willekens H, Van Camp W, Van Montagu M, Inze D, Langebartels C, Sandermann H Jr., Plant Physiol. 106(3), 1994
PMID: 12232381
Light intensity regulation of cab gene transcription is signaled by the redox state of the plastoquinone pool.
Escoubas JM, Lomas M, LaRoche J, Falkowski PG., Proc. Natl. Acad. Sci. U.S.A. 92(22), 1995
PMID: 7479759
H2O2 destruction by ascorbate-dependent systems from chloroplasts.
Groden D, Beck E., Biochim. Biophys. Acta 546(3), 1979
PMID: 454577
Catalase is a sink for H2O2 and is indispensable for stress defence in C3 plants.
Willekens H, Chamnongpol S, Davey M, Schraudner M, Langebartels C, Van Montagu M, Inze D, Van Camp W., EMBO J. 16(16), 1997
PMID: 9305623
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 11027730
PubMed | Europe PMC

Suchen in

Google Scholar