Genetic characterization of a Sinorhizobium meliloti chromosomal region involved in lipopolysaccharide biosynthesis

Lagares A, Hozbor DF, Niehaus K, Otero AJLP, Lorenzen J, Arnold W, Pühler A (2001)
J Bacteriol 183(4): 1248-1258.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Lagares, A; Hozbor, DF; Niehaus, KarstenUniBi; Otero, AJLP; Lorenzen, J; Arnold, WalterUniBi; Pühler, AlfredUniBi
Abstract / Bemerkung
The genetic characterization of a 5.5-kb chromosomal region of Sinorhizobium meliloti 2011 that contains lpsB, a gene required for the normal development of symbiosis with Medicago spp., is presented. The nucleotide sequence of this DNA fragment revealed the presence of six genes: greA and lpsB, transcribed in the forward direction; and lpsE, lpsD, lpsC, and lrp, transcribed in the reverse direction. Except for lpsB, none of the lps genes were relevant for nodulation and nitrogen fixation. Analysis of the transcriptional organization of lpsB showed that greA and lpsB are part of separate transcriptional units, which is in agreement with the finding of a DNA stretch homologous to a "nonnitrogen" promoter consensus sequence between greA and lpsB. The opposite orientation of lpsB with respect to its first downstream coding sequence, lpsE, indicated that the altered LPS and the defective symbiosis of lpsB mutants are both consequences of a primary nonpolar defect in a single gene. Global sequence comparisons revealed that the greA-lpsB and lrp genes of S. meliloti have a genetic organization similar to that of their homologous loci in R. leguminosarum by. viciae. In particular, high sequence similarity was found between the translation product of lpsB and a core related biosynthetic mannosyltransferase of R. leguminosarum by. viciae encoded by the lpcC gene. The functional relationship between these two genes was demonstrated in genetic complementation experiments in which the S. meliloti lpsB gene restored the wild-type LPS phenotype when introduced into lpcC mutants of R. leguminosarum. These results support the view that S. meliloti lpsB also encodes a mannosyltransferase that participates in the biosynthesis of the LPS core. Evidence is provided for the presence of other lpsB-homologous sequences in several members of the family Rhizobiaceae.
Erscheinungsjahr
2001
Zeitschriftentitel
J Bacteriol
Band
183
Ausgabe
4
Seite(n)
1248-1258
ISSN
0021-9193
Page URI
https://pub.uni-bielefeld.de/record/1618037

Zitieren

Lagares A, Hozbor DF, Niehaus K, et al. Genetic characterization of a Sinorhizobium meliloti chromosomal region involved in lipopolysaccharide biosynthesis. J Bacteriol. 2001;183(4):1248-1258.
Lagares, A., Hozbor, D. F., Niehaus, K., Otero, A. J. L. P., Lorenzen, J., Arnold, W., & Pühler, A. (2001). Genetic characterization of a Sinorhizobium meliloti chromosomal region involved in lipopolysaccharide biosynthesis. J Bacteriol, 183(4), 1248-1258. https://doi.org/10.1128/JB.183.4.1248-1258.2001
Lagares, A, Hozbor, DF, Niehaus, Karsten, Otero, AJLP, Lorenzen, J, Arnold, Walter, and Pühler, Alfred. 2001. “Genetic characterization of a Sinorhizobium meliloti chromosomal region involved in lipopolysaccharide biosynthesis”. J Bacteriol 183 (4): 1248-1258.
Lagares, A., Hozbor, D. F., Niehaus, K., Otero, A. J. L. P., Lorenzen, J., Arnold, W., and Pühler, A. (2001). Genetic characterization of a Sinorhizobium meliloti chromosomal region involved in lipopolysaccharide biosynthesis. J Bacteriol 183, 1248-1258.
Lagares, A., et al., 2001. Genetic characterization of a Sinorhizobium meliloti chromosomal region involved in lipopolysaccharide biosynthesis. J Bacteriol, 183(4), p 1248-1258.
A. Lagares, et al., “Genetic characterization of a Sinorhizobium meliloti chromosomal region involved in lipopolysaccharide biosynthesis”, J Bacteriol, vol. 183, 2001, pp. 1248-1258.
Lagares, A., Hozbor, D.F., Niehaus, K., Otero, A.J.L.P., Lorenzen, J., Arnold, W., Pühler, A.: Genetic characterization of a Sinorhizobium meliloti chromosomal region involved in lipopolysaccharide biosynthesis. J Bacteriol. 183, 1248-1258 (2001).
Lagares, A, Hozbor, DF, Niehaus, Karsten, Otero, AJLP, Lorenzen, J, Arnold, Walter, and Pühler, Alfred. “Genetic characterization of a Sinorhizobium meliloti chromosomal region involved in lipopolysaccharide biosynthesis”. J Bacteriol 183.4 (2001): 1248-1258.

19 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Genome-Wide Sensitivity Analysis of the Microsymbiont Sinorhizobium meliloti to Symbiotically Important, Defensin-Like Host Peptides.
Arnold MFF, Shabab M, Penterman J, Boehme KL, Griffitts JS, Walker GC., MBio 8(4), 2017
PMID: 28765224
Queuosine biosynthesis is required for sinorhizobium meliloti-induced cytoskeletal modifications on HeLa Cells and symbiosis with Medicago truncatula.
Marchetti M, Capela D, Poincloux R, Benmeradi N, Auriac MC, Le Ru A, Maridonneau-Parini I, Batut J, Masson-Boivin C., PLoS One 8(2), 2013
PMID: 23409119
The Sinorhizobium meliloti essential porin RopA1 is a target for numerous bacteriophages.
Crook MB, Draper AL, Guillory RJ, Griffitts JS., J Bacteriol 195(16), 2013
PMID: 23749981
The Sinorhizobium fredii HH103 lipopolysaccharide is not only relevant at early soybean nodulation stages but also for symbiosome stability in mature nodules.
Margaret I, Lucas MM, Acosta-Jurado S, Buendía-Clavería AM, Fedorova E, Hidalgo Á, Rodríguez-Carvajal MA, Rodriguez-Navarro DN, Ruiz-Sainz JE, Vinardell JM., PLoS One 8(10), 2013
PMID: 24098345
Synthesis of the flavonoid-induced lipopolysaccharide of Rhizobium Sp. strain NGR234 requires rhamnosyl transferases encoded by genes rgpF and wbgA.
Ardissone S, Noel KD, Klement M, Broughton WJ, Deakin WJ., Mol Plant Microbe Interact 24(12), 2011
PMID: 22066901
Identification and characterization of a glycosyltransferase involved in Acinetobacter baumannii lipopolysaccharide core biosynthesis.
Luke NR, Sauberan SL, Russo TA, Beanan JM, Olson R, Loehfelm TW, Cox AD, St Michael F, Vinogradov EV, Campagnari AA., Infect Immun 78(5), 2010
PMID: 20194587
Cloning and complementation analysis of greA gene involved in salt tolerance of Sinorhizobium meliloti.
Wei W, Gu ZJ, Zhang B, Wang L, Yang SS., Ann Microbiol 57(2), 2007
PMID: IND43996177
Nodule development induced by Mesorhizobium loti mutant strains affected in polysaccharide synthesis.
D'Antuono AL, Casabuono A, Couto A, Ugalde RA, Lepek VC., Mol Plant Microbe Interact 18(5), 2005
PMID: 15915643
Involvement of exo5 in production of surface polysaccharides in Rhizobium leguminosarum and its role in nodulation of Vicia sativa subsp. nigra.
Laus MC, Logman TJ, Van Brussel AA, Carlson RW, Azadi P, Gao MY, Kijne JW., J Bacteriol 186(19), 2004
PMID: 15375143
The symbiotic defect in a Sinorhizobium meliloti lipopolysaccharide mutant can be overcome by expression of other surface polysaccharides.
Hozbor DF, Pich Otero AJ, Lodeiro AR, Del Papa MF, Pistorio M, Lagares A., Res Microbiol 155(10), 2004
PMID: 15567281
Surface polysaccharide involvement in establishing the rhizobium-legume symbiosis.
Fraysse N, Couderc F, Poinsot V., Eur J Biochem 270(7), 2003
PMID: 12653992
Striking complexity of lipopolysaccharide defects in a collection of Sinorhizobium meliloti mutants.
Campbell GR, Sharypova LA, Scheidle H, Jones KM, Niehaus K, Becker A, Walker GC., J Bacteriol 185(13), 2003
PMID: 12813079

62 References

Daten bereitgestellt von Europe PubMed Central.

Specific oligosaccharide form of the Rhizobium meliloti exopolysaccharide promotes nodule invasion in alfalfa.
Battisti L, Lara JC, Leigh JA., Proc. Natl. Acad. Sci. U.S.A. 89(12), 1992
PMID: 1608972
R factor transfer in Rhizobium leguminosarum.
Beringer JE., J. Gen. Microbiol. 84(1), 1974
PMID: 4612098
Genes and signal molecules involved in the rhizobia-leguminoseae symbiosis.
Bladergroen MR, Spaink HP., Curr. Opin. Plant Biol. 1(4), 1998
PMID: 10066605
Construction and use of a versatile set of broad-host-range cloning and expression vectors based on the RK2 replicon.
Blatny JM, Brautaset T, Winther-Larsen HC, Haugan K, Valla S., Appl. Environ. Microbiol. 63(2), 1997
PMID: 9023917
GreA protein: a transcription elongation factor from Escherichia coli.
Borukhov S, Polyakov A, Nikiforov V, Goldfarb A., Proc. Natl. Acad. Sci. U.S.A. 89(19), 1992
PMID: 1384037
XL1-Blue: a high efficient plasmid transforming strain with beta-galactosidase selection
Bullock W, Fernandez J, Short J., 1987
Different phenotypic classes of mutants defective in synthesis of K antigen
Campbell G, Reuhs B, Walker G., 1999
Identification and characterization of large plasmids in using agarose gel electrophoresis
Casse F, Boucher C, Julliot J, Michell M, Dénarié J., 1979
Identification of Agrobacterium tumefaciens genes that direct the complete catabolism of octopine.
Cho K, Fuqua C, Martin BS, Winans SC., J. Bacteriol. 178(7), 1996
PMID: 8606160
Lipopolysaccharide mutants of Rhizobium meliloti are not defective in symbiosis.
Clover RH, Kieber J, Signer ER., J. Bacteriol. 171(7), 1989
PMID: 2738026
Rhizobium lipopolysaccharide modulates infection thread development in white clover root hairs.
Dazzo FB, Truchet GL, Hollingsworth RI, Hrabak EM, Pankratz HS, Philip-Hollingsworth S, Salzwedel JL, Chapman K, Appenzeller L, Squartini A., J. Bacteriol. 173(17), 1991
PMID: 1885517
Isolation and characterization of alfalfa-nodulating rhizobia present in acidic soils of central argentina and uruguay
del Papa MF , Balague LJ, Sowinski SC, Wegener C, Segundo E, Abarca FM, Toro N, Niehaus K, P hler A , Aguilar OM, Martinez-Drets G, Lagares A., Appl. Environ. Microbiol. 65(4), 1999
PMID: 10103231
Low molecular weight EPS II of Rhizobium meliloti allows nodule invasion in Medicago sativa.
Gonzalez JE, Reuhs BL, Walker GC., Proc. Natl. Acad. Sci. U.S.A. 93(16), 1996
PMID: 8710923
Genetic mapping of symbiotic loci on the Rhizobium meliloti chromosome.
Glazebrook J, Meiri G, Walker GC., Mol. Plant Microbe Interact. 5(3), 1992
PMID: 1330089
Structural studies of a novel exopolysaccharide produced by a mutant of Rhizobium meliloti strain Rm1021.
Her GR, Glazebrook J, Walker GC, Reinhold VN., Carbohydr. Res. 198(2), 1990
PMID: 2379191
Recovery of Tn5-flanking bacterial DNA by vector-mediated walking from the transposon to the host genome.
Hozbor DF, Pich Otero AJ, Wynne ME, Petruccelli S, Lagares A., Anal. Biochem. 259(2), 1998
PMID: 9618212
Nitrogen fixation in leguminous plants. I. General characters of root nodule bacteria isolated from species of and in Australia
Jensen H., 1942
Cloning and overexpression of glycosyltransferases that generate the lipopolysaccharide core of Rhizobium leguminosarum.
Kadrmas JL, Allaway D, Studholme RE, Sullivan JT, Ronson CW, Poole PS, Raetz CR., J. Biol. Chem. 273(41), 1998
PMID: 9756877
Lipopolysaccharides and K-antigens: their structures, biosynthesis, and functions
Kannenberg E, Reuhs B, Forsberg L, Carlson R., 1998
Identification of the gene in and its role in regulation of δ-aminolevulinic acid uptake J
King N, O'Brian M., 1997
A directional, high-frequency chromosomal mobilization system for genetic mapping of Rhizobium meliloti.
Klein S, Lohman K, Clover R, Walker GC, Signer ER., J. Bacteriol. 174(1), 1992
PMID: 1309521
A Rhizobium meliloti lipopolysaccharide mutant altered in competitiveness for nodulation of alfalfa.
Lagares A, Caetano-Anolles G, Niehaus K, Lorenzen J, Ljunggren HD, Puhler A, Favelukes G., J. Bacteriol. 174(18), 1992
PMID: 1325969

Maniatis T, Fritsch E, Sambrook J., 1982

Miller J., 1972
Recent advances in the study of nod factor perception and signal transduction.
Niebel A, Gressent F, Bono JJ, Ranjeva R, Cullimore J., Biochimie 81(6), 1999
PMID: 10433121
Symbiotic suppression of the Medicago sativa plant defense system by oligosaccharides
Niehaus K, Albus U, Baier R, Schiene K, Schröder S, Pühler A., 1998
The role of microbial surface polysaccharides in the Rhizobium-legume interaction.
Niehaus K, Becker A., Subcell. Biochem. 29(), 1998
PMID: 9594645
A lipopolysaccharide mutant induces effective nodules on the host plant (alfalfa) but fails to establish a symbiosis with
Niehaus K, Lagares A, Pühler A., 1998
Mutations in Rhizobium phaseoli that lead to arrested development of infection threads.
Noel KD, Vandenbosch KA, Kulpaca B., J. Bacteriol. 168(3), 1986
PMID: 3782040
Alfalfa root nodule invasion efficiency is dependent on Sinorhizobium meliloti polysaccharides.
Pellock BJ, Cheng HP, Walker GC., J. Bacteriol. 182(15), 2000
PMID: 10894742
Rhizobium meliloti lipopolysaccharide and exopolysaccharide can have the same function in the plant-bacterium interaction.
Putnoky P, Petrovics G, Kereszt A, Grosskopf E, Ha DT, Banfalvi Z, Kondorosi A., J. Bacteriol. 172(9), 1990
PMID: 2168384
Detailed structural characterization of succinoglycan, the major exopolysaccharide of Rhizobium meliloti Rm1021.
Reinhold BB, Chan SY, Reuber TL, Marra A, Walker GC, Reinhold VN., J. Bacteriol. 176(7), 1994
PMID: 8144468
Sinorhizobium fredii and Sinorhizobium meliloti produce structurally conserved lipopolysaccharides and strain-specific K antigens.
Reuhs BL, Geller DP, Kim JS, Fox JE, Kolli VS, Pueppke SG., Appl. Environ. Microbiol. 64(12), 1998
PMID: 9835585
Epitope identification for a panel of anti-Sinorhizobium meliloti monoclonal antibodies and application to the analysis of K antigens and lipopolysaccharides from bacteroids.
Reuhs BL, Stephens SB, Geller DP, Kim JS, Glenn J, Przytycki J, Ojanen-Reuhs T., Appl. Environ. Microbiol. 65(11), 1999
PMID: 10543844
Genes involved in the carbon metabolism of bacteriods
Ronson C, Astwood P., 1985
Regulation of symbiotic root nodule development.
Schultze M, Kondorosi A., Annu. Rev. Genet. 32(), 1998
PMID: 9928474
A broad host range mobilization system for genetic engeneering:transposon mutagenesis in gram-negative bacteria
Simon R, Priefer U, Pühler A., 1983
A lipopolysaccharide mutant of Bradyrhizobium japonicum that uncouples plant from bacterial differentiation.
Stacey G, So JS, Roth LE, Lakshmi SK B, Carlson RW., Mol. Plant Microbe Interact. 4(4), 1991
PMID: 1799697
The current status and portability of our sequence handling software.
Staden R., Nucleic Acids Res. 14(1), 1986
PMID: 3511446
Exogenous suppression of the symbiotic deficiencies of Rhizobium meliloti exo mutants.
Urzainqui A, Walker GC., J. Bacteriol. 174(10), 1992
PMID: 1577707
Rapid preparation of affinity-purified lipopolysaccharide samples for electrophoretic analysis.
Valverde C, Hozbor DF, Lagares A., BioTechniques 22(2), 1997
PMID: 9043688
A simplified protocol for fast plasmid DNA sequencing.
Zimmermann J, Voss H, Schwager C, Stegemann J, Erfle H, Stucky K, Kristensen T, Ansorge W., Nucleic Acids Res. 18(4), 1990
PMID: 2315028
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 11157937
PubMed | Europe PMC

Suchen in

Google Scholar