Resolution-based complexity control for gaussian mixture models

Meinicke P, Ritter H (2001)
Neural Computation 13(2): 453-475.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Meinicke, Peter; Ritter, HelgeUniBi
Abstract / Bemerkung
In the domain of unsupervised learning, mixtures of gaussians have become a popular tool for statistical modeling. For this class of generative models, we present a complexity control scheme, which provides an effective means for avoiding the problem of overfitting usually encountered with unconstrained (mixtures of) gaussians in high dimensions. According to some prespecified level of resolution as implied by a fixed variance noise model, the scheme provides an automatic selection of the dimensionalities of some local signal subspaces by maximum likelihood estimation. Together with a resolution-based control scheme for adjusting the number of mixture components, we arrive at an incremental model refinement procedure within a common deterministic annealing framework, which enables an efficient exploration of the model space. The advantages of the resolution-based framework are illustrated by experimental results on synthetic and high-dimensional real-world data.
Erscheinungsjahr
2001
Zeitschriftentitel
Neural Computation
Band
13
Ausgabe
2
Seite(n)
453-475
ISSN
0899-7667
eISSN
1530-888X
Page URI
https://pub.uni-bielefeld.de/record/1618021

Zitieren

Meinicke P, Ritter H. Resolution-based complexity control for gaussian mixture models. Neural Computation. 2001;13(2):453-475.
Meinicke, P., & Ritter, H. (2001). Resolution-based complexity control for gaussian mixture models. Neural Computation, 13(2), 453-475. https://doi.org/10.1162/089976601300014600
Meinicke, Peter, and Ritter, Helge. 2001. “Resolution-based complexity control for gaussian mixture models”. Neural Computation 13 (2): 453-475.
Meinicke, P., and Ritter, H. (2001). Resolution-based complexity control for gaussian mixture models. Neural Computation 13, 453-475.
Meinicke, P., & Ritter, H., 2001. Resolution-based complexity control for gaussian mixture models. Neural Computation, 13(2), p 453-475.
P. Meinicke and H. Ritter, “Resolution-based complexity control for gaussian mixture models”, Neural Computation, vol. 13, 2001, pp. 453-475.
Meinicke, P., Ritter, H.: Resolution-based complexity control for gaussian mixture models. Neural Computation. 13, 453-475 (2001).
Meinicke, Peter, and Ritter, Helge. “Resolution-based complexity control for gaussian mixture models”. Neural Computation 13.2 (2001): 453-475.
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Suchen in

Google Scholar