Phylogenetic analysis of microbial diversity in the rhizoplane of oilseed rape (Brassica napus cv. Westar) employing cultivation-dependent and cultivation-independent approaches

Kaiser O, Pühler A, Selbitschka W (2001)
MICROBIAL ECOLOGY 42(2): 136-149.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Abstract / Bemerkung
The structure of the microbial rhizoplane community of the important crop plant oilseed rape was studied by using a culture-dependent as well as a culture-independent approach based on 16S rDNA amplification. After isolation of the microbial community from the rhizoplane of oilseed rape (Brassica napus cv. Westar), the collected suspension was divided into two parts. One part was used for cultivation of bacteria onto three different growth media to establish a culture collection. From the other part of the rhizoplane suspension, genomic DNA was isolated and purified. Thereafter, 16S rDNA was amplified by PCR and cloned to obtain a library of 16S rDNA genes representative for the bacterial communities of this habitat. Phylogenetic 16S rDNA sequence analysis of 103 clones of this library revealed considerable differences from the corresponding nucleotide sequences of 111 cultured bacteria. Whereas the 16S rDNA clone library was dominated by alpha -Proteobacteria and bacteria of the Cytophaga-Flavobacterium-Bacteroides (CFB) phylum (51% and 30%, respectively), less than 17% of the cultured bacteria belonged to these two groups. More than 64% of the cultivated isolates were allocated to the beta- and gamma -subclasses of the Proteobacteria, which were present in the clone library at about 14%. Most of the clones of the alpha -Proteobacteria of the library showed highest similarity to Bradyrhizobium sp. No such bacteria were found in the culture collection. Similarly, the second dominant group of the clone library comprising members of the CFB phylum was represented in the culture collection by a single isolate. The phylogenetic analysis of isolates of the culture collection clearly emphasized the need to use different growth media for recovery of rhizoplane bacteria. Whereas most of the alpha -Proteobacteria were recovered on complex medium, most of the beta -Proteobacteria were isolated onto minimal media. Our results demonstrate that the combined approach pursued in this paper is necessary to explore the biodiversity of bacterial rhizoplane communities.
Erscheinungsjahr
Zeitschriftentitel
MICROBIAL ECOLOGY
Band
42
Ausgabe
2
Seite(n)
136-149
ISSN
PUB-ID

Zitieren

Kaiser O, Pühler A, Selbitschka W. Phylogenetic analysis of microbial diversity in the rhizoplane of oilseed rape (Brassica napus cv. Westar) employing cultivation-dependent and cultivation-independent approaches. MICROBIAL ECOLOGY. 2001;42(2):136-149.
Kaiser, O., Pühler, A., & Selbitschka, W. (2001). Phylogenetic analysis of microbial diversity in the rhizoplane of oilseed rape (Brassica napus cv. Westar) employing cultivation-dependent and cultivation-independent approaches. MICROBIAL ECOLOGY, 42(2), 136-149. doi:10.1007/s002480000121
Kaiser, O., Pühler, A., and Selbitschka, W. (2001). Phylogenetic analysis of microbial diversity in the rhizoplane of oilseed rape (Brassica napus cv. Westar) employing cultivation-dependent and cultivation-independent approaches. MICROBIAL ECOLOGY 42, 136-149.
Kaiser, O., Pühler, A., & Selbitschka, W., 2001. Phylogenetic analysis of microbial diversity in the rhizoplane of oilseed rape (Brassica napus cv. Westar) employing cultivation-dependent and cultivation-independent approaches. MICROBIAL ECOLOGY, 42(2), p 136-149.
O. Kaiser, A. Pühler, and W. Selbitschka, “Phylogenetic analysis of microbial diversity in the rhizoplane of oilseed rape (Brassica napus cv. Westar) employing cultivation-dependent and cultivation-independent approaches”, MICROBIAL ECOLOGY, vol. 42, 2001, pp. 136-149.
Kaiser, O., Pühler, A., Selbitschka, W.: Phylogenetic analysis of microbial diversity in the rhizoplane of oilseed rape (Brassica napus cv. Westar) employing cultivation-dependent and cultivation-independent approaches. MICROBIAL ECOLOGY. 42, 136-149 (2001).
Kaiser, O., Pühler, Alfred, and Selbitschka, Werner. “Phylogenetic analysis of microbial diversity in the rhizoplane of oilseed rape (Brassica napus cv. Westar) employing cultivation-dependent and cultivation-independent approaches”. MICROBIAL ECOLOGY 42.2 (2001): 136-149.

53 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Root isoflavonoids and hairy root transformation influence key bacterial taxa in the soybean rhizosphere.
White LJ, Ge X, Brözel VS, Subramanian S., Environ Microbiol 19(4), 2017
PMID: 27871141
Crop Establishment Practices Are a Driver of the Plant Microbiota in Winter Oilseed Rape (Brassica napus).
Rathore R, Dowling DN, Forristal PD, Spink J, Cotter PD, Bulgarelli D, Germaine KJ., Front Microbiol 8(), 2017
PMID: 28848510
Microbial succession in white button mushroom production systems from compost and casing to a marketable packed product
Siyoum NA, Surridge K, van der Linde EJ, Korsten L., Ann Microbiol 66(1), 2016
PMID: IND604859689
Evaluation of Strategies to Separate Root-Associated Microbial Communities: A Crucial Choice in Rhizobiome Research.
Richter-Heitmann T, Eickhorst T, Knauth S, Friedrich MW, Schmidt H., Front Microbiol 7(), 2016
PMID: 27252690
Changes in root bacterial communities associated to two different development stages of canola (Brassica napus L. var oleifera) evaluated through next-generation sequencing technology.
de Campos SB, Youn JW, Farina R, Jaenicke S, Jünemann S, Szczepanowski R, Beneduzi A, Vargas LK, Goesmann A, Wendisch VF, Passaglia LM., Microb Ecol 65(3), 2013
PMID: 23064947
Bacterial communities associated with Brassica napus L. grown on trace element-contaminated and non-contaminated fields: a genotypic and phenotypic comparison.
Croes S, Weyens N, Janssen J, Vercampt H, Colpaert JV, Carleer R, Vangronsveld J., Microb Biotechnol 6(4), 2013
PMID: 23594409
Long-term rice and green manure rotation alters the endophytic bacterial communities of the rice root.
Zhang XX, Gao JS, Cao YH, Ma XT, He JZ., Microb Ecol 66(4), 2013
PMID: 24046075
Microbial community analysis in the roots of aquatic plants and isolation of novel microbes including an organism of the candidate phylum OP10.
Tanaka Y, Tamaki H, Matsuzawa H, Nigaya M, Mori K, Kamagata Y., Microbes Environ 27(2), 2012
PMID: 22791047
PhyloChip hybridization uncovered an enormous bacterial diversity in the rhizosphere of different potato cultivars: many common and few cultivar-dependent taxa.
Weinert N, Piceno Y, Ding GC, Meincke R, Heuer H, Berg G, Schloter M, Andersen G, Smalla K., FEMS Microbiol Ecol 75(3), 2011
PMID: 21204872
Characterization of Ni-resistant bacteria in the rhizosphere of the hyperaccumulator Alyssum murale by 16S rRNA gene sequence analysis
Abou-Shanab RAI, van Berkum P, Angle JS, Delorme TA, Chaney RL, Ghozlan HA, Ghanem K, Moawad H., World J Microbiol Biotechnol 26(1), 2010
PMID: IND44299488
Detection of a reproducible, single-member shift in soil bacterial communities exposed to low levels of hydrogen.
Osborne CA, Peoples MB, Janssen PH., Appl Environ Microbiol 76(5), 2010
PMID: 20061453
Environmental Escherichia coli occur as natural plant growth-promoting soil bacterium.
Nautiyal CS, Rehman A, Chauhan PS., Arch Microbiol 192(3), 2010
PMID: 20084366
Molecular detection of transcriptionally active bacteria from failed prosthetic hip joints removed during revision arthroplasty.
Riggio MP, Dempsey KE, Lennon A, Allan D, Ramage G, Bagg J., Eur J Clin Microbiol Infect Dis 29(7), 2010
PMID: 20449620
Exploration of hitherto-uncultured bacteria from the rhizosphere.
da Rocha UN, van Overbeek L, van Elsas JD., FEMS Microbiol Ecol 69(3), 2009
PMID: 19508698
Endophytic bacterial diversity in grapevine (Vitis vinifera L.) leaves described by 16S rRNA gene sequence analysis and length heterogeneity-PCR.
Bulgari D, Casati P, Brusetti L, Quaglino F, Brasca M, Daffonchio D, Bianco PA., J Microbiol 47(4), 2009
PMID: 19763412
Endophytic bacterial diversity in rice (Oryza sativa L.) roots estimated by 16S rDNA sequence analysis.
Sun L, Qiu F, Zhang X, Dai X, Dong X, Song W., Microb Ecol 55(3), 2008
PMID: 17690836
Nevskia soli sp. nov., isolated from soil cultivated with Korean ginseng.
Weon HY, Kim BY, Son JA, Song MH, Kwon SW, Go SJ, Stackebrandt E., Int J Syst Evol Microbiol 58(pt 3), 2008
PMID: 18319458
Molecular analysis of bacterial diversity in kerosene-based drilling fluid from the deep ice borehole at Vostok, East Antarctica.
Alekhina IA, Marie D, Petit JR, Lukin VV, Zubkov VM, Bulat SA., FEMS Microbiol Ecol 59(2), 2007
PMID: 17313578
Culture clash: challenging the dogma of microbial diversity.
Donachie SP, Foster JS, Brown MV., ISME J 1(2), 2007
PMID: 18043618
Occurrence and diversity of bacterial communities in Tuber magnatum during truffle maturation.
Barbieri E, Guidi C, Bertaux J, Frey-Klett P, Garbaye J, Ceccaroli P, Saltarelli R, Zambonelli A, Stocchi V., Environ Microbiol 9(9), 2007
PMID: 17686021
Characterization of developing microbial communities in Mount St. Helens pyroclastic substrate
Ibekwe AM, Kennedy AC, Halvorson JJ, Yang CH., Soil Biol Biochem 39(10), 2007
PMID: IND43984416
Diagnostic microbial microarrays in soil ecology.
Sessitsch A, Hackl E, Wenzl P, Kilian A, Kostic T, Stralis-Pavese N, Sandjong BT, Bodrossy L., New Phytol 171(4), 2006
PMID: 16918544
Succession of bacterial communities during early plant development: transition from seed to root and effect of compost amendment.
Green SJ, Inbar E, Michel FC, Hadar Y, Minz D., Appl Environ Microbiol 72(6), 2006
PMID: 16751505
Climate factors influencing bacterial count in background air samples.
Harrison RM, Jones AM, Biggins PD, Pomeroy N, Cox CS, Kidd SP, Hobman JL, Brown NL, Beswick A., Int J Biometeorol 49(3), 2005
PMID: 15290434
Effect of carbon and nitrogen input on the bacterial community structure of Neocaledonian nickel mine spoils.
Héry M, Herrera A, Vogel TM, Normand P, Navarro E., FEMS Microbiol Ecol 51(3), 2005
PMID: 16329881
Isolation and properties of methanesulfonate-degrading Afipia felis from Antarctica and comparison with other strains of A. felis.
Moosvi SA, Pacheco CC, McDonald IR, De Marco P, Pearce DA, Kelly DP, Wood AP., Environ Microbiol 7(1), 2005
PMID: 15643932
Comparative analysis of bacterial diversity in freshwater sediment of a shallow eutrophic lake by molecular and improved cultivation-based techniques.
Tamaki H, Sekiguchi Y, Hanada S, Nakamura K, Nomura N, Matsumura M, Kamagata Y., Appl Environ Microbiol 71(4), 2005
PMID: 15812052
New evidence for bacterial diversity in the ascoma of the ectomycorrhizal fungus Tuber borchii Vittad.
Barbieri E, Bertini L, Rossi I, Ceccaroli P, Saltarelli R, Guidi C, Zambonelli A, Stocchi V., FEMS Microbiol Lett 247(1), 2005
PMID: 15927744
Genetic diversity of bacterial communities of serpentine soil and of rhizosphere of the nickel-hyperaccumulator plant Alyssum bertolonii.
Mengoni A, Grassi E, Barzanti R, Biondi EG, Gonnelli C, Kim CK, Bazzicalupo M., Microb Ecol 48(2), 2004
PMID: 15546041
Cultivation-dependent and -independent approaches for determining bacterial diversity in heavy-metal-contaminated soil.
Ellis RJ, Morgan P, Weightman AJ, Fry JC., Appl Environ Microbiol 69(6), 2003
PMID: 12788719
Microbial communities and their interactions in soil and rhizosphere ecosystems.
Kent AD, Triplett EW., Annu Rev Microbiol 56(), 2002
PMID: 12142496
Molecular community analysis of microbial diversity.
Dahllöf I., Curr Opin Biotechnol 13(3), 2002
PMID: 12180095

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 12024277
PubMed | Europe PMC

Suchen in

Google Scholar