Genomics insights into symbiotic nitrogen fixation

Weidner S, Pühler A, Küster H (2003)
CURRENT OPINION IN BIOTECHNOLOGY 14(2): 200-205.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Abstract / Bemerkung
Following an interaction with rhizobial soil bacteria, legume plants are able to form a novel organ, termed the root nodule. This organ houses the rhizobial microsymbionts, which perform the biological nitrogen fixation process resulting in the incorporation of ammonia into plant organic molecules. Recent advances in genomics have opened exciting new perspectives in this field by providing the complete gene inventory of two rhizobial microsymbionts. The complete genome sequences of Mesorhizobium loti, the symbiont of several Lotus species, and Sinorhizobium meliloti, the symbiont of alfalfa, were determined and annotated in detail. For legume macrosymbionts, expressed sequence tag projects and expression analyses using DNA arrays in conjunction with proteomics approaches have identified numerous genes involved in root nodule formation and nitrogen fixation. The isolation of legume genes by tagging or positional cloning recently allowed the identification of genes that control the very early steps of root nodule organogenesis.
Erscheinungsjahr
Zeitschriftentitel
CURRENT OPINION IN BIOTECHNOLOGY
Band
14
Ausgabe
2
Seite(n)
200-205
ISSN
PUB-ID

Zitieren

Weidner S, Pühler A, Küster H. Genomics insights into symbiotic nitrogen fixation. CURRENT OPINION IN BIOTECHNOLOGY. 2003;14(2):200-205.
Weidner, S., Pühler, A., & Küster, H. (2003). Genomics insights into symbiotic nitrogen fixation. CURRENT OPINION IN BIOTECHNOLOGY, 14(2), 200-205. doi:10.1016/S0958-1669(03)00022-3
Weidner, S., Pühler, A., and Küster, H. (2003). Genomics insights into symbiotic nitrogen fixation. CURRENT OPINION IN BIOTECHNOLOGY 14, 200-205.
Weidner, S., Pühler, A., & Küster, H., 2003. Genomics insights into symbiotic nitrogen fixation. CURRENT OPINION IN BIOTECHNOLOGY, 14(2), p 200-205.
S. Weidner, A. Pühler, and H. Küster, “Genomics insights into symbiotic nitrogen fixation”, CURRENT OPINION IN BIOTECHNOLOGY, vol. 14, 2003, pp. 200-205.
Weidner, S., Pühler, A., Küster, H.: Genomics insights into symbiotic nitrogen fixation. CURRENT OPINION IN BIOTECHNOLOGY. 14, 200-205 (2003).
Weidner, Stefan, Pühler, Alfred, and Küster, Helge. “Genomics insights into symbiotic nitrogen fixation”. CURRENT OPINION IN BIOTECHNOLOGY 14.2 (2003): 200-205.

23 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

From the Lab to the Farm: An Industrial Perspective of Plant Beneficial Microorganisms.
Parnell JJ, Berka R, Young HA, Sturino JM, Kang Y, Barnhart DM, DiLeo MV., Front Plant Sci 7(), 2016
PMID: 27540383
Protein-based stable isotope probing (protein-SIP) in functional metaproteomics.
Seifert J, Taubert M, Jehmlich N, Schmidt F, Völker U, Vogt C, Richnow HH, von Bergen M., Mass Spectrom Rev 31(6), 2012
PMID: 22422553
Phylogenomics of Reichenowia parasitica, an alphaproteobacterial endosymbiont of the freshwater leech Placobdella parasitica.
Kvist S, Narechania A, Oceguera-Figueroa A, Fuks B, Siddall ME., PLoS One 6(11), 2011
PMID: 22132238
A shotgun lipidomics approach in Sinorhizobium meliloti as a tool in functional genomics.
Basconcillo LS, Zaheer R, Finan TM, McCarry BE., J Lipid Res 50(6), 2009
PMID: 19096048
Cyclopropane fatty acyl synthase in Sinorhizobium meliloti.
Saborido Basconcillo L, Zaheer R, Finan TM, McCarry BE., Microbiology 155(pt 2), 2009
PMID: 19202086
A shotgun lipidomics study of a putative lysophosphatidic acid acyl transferase (PlsC) in Sinorhizobium meliloti.
Basconcillo LS, Zaheer R, Finan TM, McCarry BE., J Chromatogr B Analyt Technol Biomed Life Sci 877(26), 2009
PMID: 19525157
The Medicago truncatula lysin [corrected] motif-receptor-like kinase gene family includes NFP and new nodule-expressed genes.
Arrighi JF, Barre A, Ben Amor B, Bersoult A, Soriano LC, Mirabella R, de Carvalho-Niebel F, Journet EP, Ghérardi M, Huguet T, Geurts R, Dénarié J, Rougé P, Gough C., Plant Physiol 142(1), 2006
PMID: 16844829
N-hexanoyl-L-homoserine lactone, a mediator of bacterial quorum-sensing regulation, exhibits plant-dependent stability and may be inactivated by germinating Lotus corniculatus seedlings.
Delalande L, Faure D, Raffoux A, Uroz S, D'Angelo-Picard C, Elasri M, Carlier A, Berruyer R, Petit A, Williams P, Dessaux Y., FEMS Microbiol Ecol 52(1), 2005
PMID: 16329888
Medicago-Sinorhizobium symbiotic specificity evolution and the geographic expansion of Medicago.
Béna G, Lyet A, Huguet T, Olivieri I., J Evol Biol 18(6), 2005
PMID: 16313467
Induction of thioredoxin is required for nodule development to reduce reactive oxygen species levels in soybean roots.
Lee MY, Shin KH, Kim YK, Suh JY, Gu YY, Kim MR, Hur YS, Son O, Kim JS, Song E, Lee MS, Nam KH, Hwang KH, Sung MK, Kim HJ, Chun JY, Park M, Ahn TI, Hong CB, Lee SH, Park HJ, Park JS, Verma DP, Cheon CI., Plant Physiol 139(4), 2005
PMID: 16299179
Construction and validation of cDNA-based Mt6k-RIT macro- and microarrays to explore root endosymbioses in the model legume Medicago truncatula.
Küster H, Hohnjec N, Krajinski F, El YF, Manthey K, Gouzy J, Dondrup M, Meyer F, Kalinowski J, Brechenmacher L, van Tuinen D, Gianinazzi-Pearson V, Pühler A, Gamas P, Becker A., J Biotechnol 108(2), 2004
PMID: 15129719
What can bacterial genome research teach us about bacteria-plant interactions?
Pühler A, Arlat M, Becker A, Göttfert M, Morrissey JP, O'Gara F., Curr Opin Plant Biol 7(2), 2004
PMID: 15003213
Novel types of two-domain multi-copper oxidases: possible missing links in the evolution.
Nakamura K, Kawabata T, Yura K, Go N., FEBS Lett 553(3), 2003
PMID: 14572631
EMMA: a platform for consistent storage and efficient analysis of microarray data.
Dondrup M, Goesmann A, Bartels D, Kalinowski J, Krause L, Linke B, Rupp O, Sczyrba A, Pühler A, Meyer F., J Biotechnol 106(2-3), 2003
PMID: 14651856

45 References

Daten bereitgestellt von Europe PubMed Central.

Genetics and genomics of root symbiosis.
Stougaard J., Curr. Opin. Plant Biol. 4(4), 2001
PMID: 11418343
Rhizobium Nod factor perception and signalling
Geurts, Plant Cell Suppl(), 2002
Molecular Mechanisms in Root Nodule Development.
Crespi M, Galvez S., J. Plant Growth Regul. 19(2), 2000
PMID: 11038225
Rhizobium phylogenies and bacterial genetic diversity
Martı́nez-Romero, Critcal Rev. Plant Sci. 15(), 1996

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Regulation of succinoglycan and galactoglucan biosynthesis in Sinorhizobium meliloti.
Becker A, Ruberg S, Baumgarth B, Bertram-Drogatz PA, Quester I, Puhler A., J. Mol. Microbiol. Biotechnol. 4(3), 2002
PMID: 11931545
Molecular basis of symbiosis between Rhizobium and legumes.
Freiberg C, Fellay R, Bairoch A, Broughton WJ, Rosenthal A, Perret X., Nature 387(6631), 1997
PMID: 9163424
Genetic snapshots of the Rhizobium species NGR234 genome.
Viprey V, Rosenthal A, Broughton WJ, Perret X., Genome Biol. 1(6), 2000
PMID: 11178268
Complete genome structure of the nitrogen-fixing symbiotic bacterium Mesorhizobium loti.
Kaneko T, Nakamura Y, Sato S, Asamizu E, Kato T, Sasamoto S, Watanabe A, Idesawa K, Ishikawa A, Kawashima K, Kimura T, Kishida Y, Kiyokawa C, Kohara M, Matsumoto M, Matsuno A, Mochizuki Y, Nakayama S, Nakazaki N, Shimpo S, Sugimoto M, Takeuchi C, Yamada M, Tabata S., DNA Res. 7(6), 2000
PMID: 11214968
The composite genome of the legume symbiont Sinorhizobium meliloti.
Galibert F, Finan TM, Long SR, Puhler A, Abola P, Ampe F, Barloy-Hubler F, Barnett MJ, Becker A, Boistard P, Bothe G, Boutry M, Bowser L, Buhrmester J, Cadieu E, Capela D, Chain P, Cowie A, Davis RW, Dreano S, Federspiel NA, Fisher RF, Gloux S, Godrie T, Goffeau A, Golding B, Gouzy J, Gurjal M, Hernandez-Lucas I, Hong A, Huizar L, Hyman RW, Jones T, Kahn D, Kahn ML, Kalman S, Keating DH, Kiss E, Komp C, Lelaure V, Masuy D, Palm C, Peck MC, Pohl TM, Portetelle D, Purnelle B, Ramsperger U, Surzycki R, Thebault P, Vandenbol M, Vorholter FJ, Weidner S, Wells DH, Wong K, Yeh KC, Batut J., Science 293(5530), 2001
PMID: 11474104
Analysis of the chromosome sequence of the legume symbiont Sinorhizobium meliloti strain 1021.
Capela D, Barloy-Hubler F, Gouzy J, Bothe G, Ampe F, Batut J, Boistard P, Becker A, Boutry M, Cadieu E, Dreano S, Gloux S, Godrie T, Goffeau A, Kahn D, Kiss E, Lelaure V, Masuy D, Pohl T, Portetelle D, Puhler A, Purnelle B, Ramsperger U, Renard C, Thebault P, Vandenbol M, Weidner S, Galibert F., Proc. Natl. Acad. Sci. U.S.A. 98(17), 2001
PMID: 11481430
Nucleotide sequence and predicted functions of the entire Sinorhizobium meliloti pSymA megaplasmid.
Barnett MJ, Fisher RF, Jones T, Komp C, Abola AP, Barloy-Hubler F, Bowser L, Capela D, Galibert F, Gouzy J, Gurjal M, Hong A, Huizar L, Hyman RW, Kahn D, Kahn ML, Kalman S, Keating DH, Palm C, Peck MC, Surzycki R, Wells DH, Yeh KC, Davis RW, Federspiel NA, Long SR., Proc. Natl. Acad. Sci. U.S.A. 98(17), 2001
PMID: 11481432
The complete sequence of the 1,683-kb pSymB megaplasmid from the N2-fixing endosymbiont Sinorhizobium meliloti.
Finan TM, Weidner S, Wong K, Buhrmester J, Chain P, Vorholter FJ, Hernandez-Lucas I, Becker A, Cowie A, Gouzy J, Golding B, Puhler A., Proc. Natl. Acad. Sci. U.S.A. 98(17), 2001
PMID: 11481431
Megaplasmid pRme2011a of Sinorhizobium meliloti is not required for viability.
Oresnik IJ, Liu SL, Yost CK, Hynes MF., J. Bacteriol. 182(12), 2000
PMID: 10852892
Potential symbiosis-specific genes uncovered by sequencing a 410-kilobase DNA region of the Bradyrhizobium japonicum chromosome.
Gottfert M, Rothlisberger S, Kundig C, Beck C, Marty R, Hennecke H., J. Bacteriol. 183(4), 2001
PMID: 11157954
Comparative sequence analysis of the symbiosis island of Mesorhizobium loti strain R7A.
Sullivan JT, Trzebiatowski JR, Cruickshank RW, Gouzy J, Brown SD, Elliot RM, Fleetwood DJ, McCallum NG, Rossbach U, Stuart GS, Weaver JE, Webby RJ, De Bruijn FJ, Ronson CW., J. Bacteriol. 184(11), 2002
PMID: 12003951
The genome of the natural genetic engineer Agrobacterium tumefaciens C58.
Wood DW, Setubal JC, Kaul R, Monks DE, Kitajima JP, Okura VK, Zhou Y, Chen L, Wood GE, Almeida NF Jr, Woo L, Chen Y, Paulsen IT, Eisen JA, Karp PD, Bovee D Sr, Chapman P, Clendenning J, Deatherage G, Gillet W, Grant C, Kutyavin T, Levy R, Li MJ, McClelland E, Palmieri A, Raymond C, Rouse G, Saenphimmachak C, Wu Z, Romero P, Gordon D, Zhang S, Yoo H, Tao Y, Biddle P, Jung M, Krespan W, Perry M, Gordon-Kamm B, Liao L, Kim S, Hendrick C, Zhao ZY, Dolan M, Chumley F, Tingey SV, Tomb JF, Gordon MP, Olson MV, Nester EW., Science 294(5550), 2001
PMID: 11743193
Genome sequence of the plant pathogen and biotechnology agent Agrobacterium tumefaciens C58.
Goodner B, Hinkle G, Gattung S, Miller N, Blanchard M, Qurollo B, Goldman BS, Cao Y, Askenazi M, Halling C, Mullin L, Houmiel K, Gordon J, Vaudin M, Iartchouk O, Epp A, Liu F, Wollam C, Allinger M, Doughty D, Scott C, Lappas C, Markelz B, Flanagan C, Crowell C, Gurson J, Lomo C, Sear C, Strub G, Cielo C, Slater S., Science 294(5550), 2001
PMID: 11743194
High-resolution transcriptional analysis of the symbiotic plasmid of Rhizobium sp. NGR234.
Perret X, Freiberg C, Rosenthal A, Broughton WJ, Fellay R., Mol. Microbiol. 32(2), 1999
PMID: 10231496
Proteome analysis demonstrates complex replicon and luteolin interactions in pSyma-cured derivatives of Sinorhizobium meliloti strain 2011.
Chen H, Higgins J, Oresnik IJ, Hynes MF, Natera S, Djordjevic MA, Weinman JJ, Rolfe BG., Electrophoresis 21(17), 2000
PMID: 11271501
Proteome analysis of differentially displayed proteins as a tool for the investigation of symbiosis.
Natera SH, Guerreiro N, Djordjevic MA., Mol. Plant Microbe Interact. 13(9), 2000
PMID: 10975656
Use of a subtractive hybridization approach to identify new Medicago truncatula genes induced during root nodule development.
Gamas P, Niebel Fde C, Lescure N, Cullimore J., Mol. Plant Microbe Interact. 9(4), 1996
PMID: 8634476

AUTHOR UNKNOWN, 0
Model legumes get the Nod
Cook, Plant Cell 9(), 1997
Medicago truncatula, a model plant for studying the molecular genetics of the Rhizobium-legume symbiosis
Barker, Plant Mol. Biol. Rep. 8(), 1990
Lotus japonicus, an autogamous, diploid legume species for classical and molecular genetics
Handberg, Plant J. 2(), 1992
Construction of a genetic linkage map of the model legume Lotus japonicus using an intraspecific F2 population.
Hayashi M, Miyahara A, Sato S, Kato T, Yoshikawa M, Taketa M, Hayashi M, Pedrosa A, Onda R, Imaizumi-Anraku H, Bachmair A, Sandal N, Stougaard J, Murooka Y, Tabata S, Kawasaki S, Kawaguchi M, Harada K., DNA Res. 8(6), 2001
PMID: 11853317
Integration of the FISH pachytene and genetic maps of Medicago truncatula.
Kulikova O, Gualtieri G, Geurts R, Kim DJ, Cook D, Huguet T, de Jong JH, Fransz PF, Bisseling T., Plant J. 27(1), 2001
PMID: 11489182
dbEST--database for "expressed sequence tags".
Boguski MS, Lowe TM, Tolstoshev CM., Nat. Genet. 4(4), 1993
PMID: 8401577
Expressed sequence tags from a root-hair-enriched medicago truncatula cDNA library
Covitz PA, Smith LS, Long SR., Plant Physiol. 117(4), 1998
PMID: 9701588
Analysis of Medicago truncatula nodule expressed sequence tags.
Gyorgyey J, Vaubert D, Jimenez-Zurdo JI, Charon C, Troussard L, Kondorosi A, Kondorosi E., Mol. Plant Microbe Interact. 13(1), 2000
PMID: 10656586
The TIGR gene indices: reconstruction and representation of expressed gene sequences.
Quackenbush J, Liang F, Holt I, Pertea G, Upton J., Nucleic Acids Res. 28(1), 2000
PMID: 10592205
The Medicago Genome Initiative: a model legume database.
Bell CJ, Dixon RA, Farmer AD, Flores R, Inman J, Gonzales RA, Harrison MJ, Paiva NL, Scott AD, Weller JW, May GD., Nucleic Acids Res. 29(1), 2001
PMID: 11125064
Genome-wide identification of nodule-specific transcripts in the model legume Medicago truncatula.
Fedorova M, van de Mortel J, Matsumoto PA, Cho J, Town CD, VandenBosch KA, Gantt JS, Vance CP., Plant Physiol. 130(2), 2002
PMID: 12376622
Novel aspects of symbiotic nitrogen fixation uncovered by transcript profiling with cDNA arrays.
Colebatch G, Kloska S, Trevaskis B, Freund S, Altmann T, Udvardi MK., Mol. Plant Microbe Interact. 15(5), 2002
PMID: 12036271
Proteome analysis and identification of symbiosis-related proteins from Medicago truncatula Gaertn. by two-dimensional electrophoresis and mass spectrometry.
Bestel-Corre G, Dumas-Gaudot E, Poinsot V, Dieu M, Dierick JF, van TD, Remacle J, Gianinazzi-Pearson V, Gianinazzi S., Electrophoresis 23(1), 2002
PMID: 11824612
A plant regulator controlling development of symbiotic root nodules.
Schauser L, Roussis A, Stiller J, Stougaard J., Nature 402(6758), 1999
PMID: 10647012
A receptor kinase gene regulating symbiotic nodule development.
Endre G, Kereszt A, Kevei Z, Mihacea S, Kalo P, Kiss GB., Nature 417(6892), 2002
PMID: 12087406
A plant receptor-like kinase required for both bacterial and fungal symbiosis.
Stracke S, Kistner C, Yoshida S, Mulder L, Sato S, Kaneko T, Tabata S, Sandal N, Stougaard J, Szczyglowski K, Parniske M., Nature 417(6892), 2002
PMID: 12087405

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 12732321
PubMed | Europe PMC

Suchen in

Google Scholar