Salt-dependent expression of a nitrate transporter and two amino acid transporter genes in Mesembryanthemum crystallinum

Popova OV, Dietz K-J, Golldack D (2003)
PLANT MOLECULAR BIOLOGY 52(3): 569-578.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Abstract / Bemerkung
Uptake and transport of inorganic nitrogen and allocation of amino acids are essential for plant growth and development. To study the effects of salinity on the regulation of transporters for nitrogenous compounds, we characterized the putative nitrate transporter McNRT1 and the amino acid transporters McAAT1 and McAAT2 from Mesembryanthemum crystallinum. By transcript analyses, McAAT1 was found in leaves, McAAT2 in roots, and McNRT1 in both tissues. By in situ PCR McNRT1 was localized, for example, to epidermal and vascular cells whereas McAAT2 was abundant in most cell types in mature roots and McAAT1 in the mesophyll and cells neighbouring xylem vessels in leaves. In response to salt stress, expression of McAAT2 and McNRT1 was stimulated in the root vasculature. In addition, McNRT1 and McAAT1 signals increased in the leaf phloem. Growth of yeast mutants deficient in histidine uptake was restored by McAAT2 whereas both McAAT1 and McAAT2 complemented a yeast mutant carrying a defect in proline uptake. The differential and cell-specific transcriptional activation of genes encoding nitrogen and amino acid transporters under salt stress suggest complex coordinated regulation of these transporter families to maintain uptake and distribution of nitrogenous compounds and amino acids under conditions of high salinity in plants.
Stichworte
glutamine oxoglutarate aminotransferase (glutamate synthase); GOGAT
Erscheinungsjahr
2003
Zeitschriftentitel
PLANT MOLECULAR BIOLOGY
Band
52
Ausgabe
3
Seite(n)
569-578
ISSN
0167-4412
Page URI
https://pub.uni-bielefeld.de/record/1610798

Zitieren

Popova OV, Dietz K-J, Golldack D. Salt-dependent expression of a nitrate transporter and two amino acid transporter genes in Mesembryanthemum crystallinum. PLANT MOLECULAR BIOLOGY. 2003;52(3):569-578.
Popova, O. V., Dietz, K. - J., & Golldack, D. (2003). Salt-dependent expression of a nitrate transporter and two amino acid transporter genes in Mesembryanthemum crystallinum. PLANT MOLECULAR BIOLOGY, 52(3), 569-578. doi:10.1023/A:1024802101057
Popova, O. V., Dietz, K. - J., and Golldack, D. (2003). Salt-dependent expression of a nitrate transporter and two amino acid transporter genes in Mesembryanthemum crystallinum. PLANT MOLECULAR BIOLOGY 52, 569-578.
Popova, O.V., Dietz, K.-J., & Golldack, D., 2003. Salt-dependent expression of a nitrate transporter and two amino acid transporter genes in Mesembryanthemum crystallinum. PLANT MOLECULAR BIOLOGY, 52(3), p 569-578.
O.V. Popova, K.-J. Dietz, and D. Golldack, “Salt-dependent expression of a nitrate transporter and two amino acid transporter genes in Mesembryanthemum crystallinum”, PLANT MOLECULAR BIOLOGY, vol. 52, 2003, pp. 569-578.
Popova, O.V., Dietz, K.-J., Golldack, D.: Salt-dependent expression of a nitrate transporter and two amino acid transporter genes in Mesembryanthemum crystallinum. PLANT MOLECULAR BIOLOGY. 52, 569-578 (2003).
Popova, OV, Dietz, Karl-Josef, and Golldack, Dortje. “Salt-dependent expression of a nitrate transporter and two amino acid transporter genes in Mesembryanthemum crystallinum”. PLANT MOLECULAR BIOLOGY 52.3 (2003): 569-578.

22 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Amelioration of nitrate uptake under salt stress by ectomycorrhiza with and without a Hartig net.
Sa G, Yao J, Deng C, Liu J, Zhang Y, Zhu Z, Zhang Y, Ma X, Zhao R, Lin S, Lu C, Polle A, Chen S., New Phytol 222(4), 2019
PMID: 30756398
High-throughput deep sequencing reveals that microRNAs play important roles in salt tolerance of euhalophyte Salicornia europaea.
Feng J, Wang J, Fan P, Jia W, Nie L, Jiang P, Chen X, Lv S, Wan L, Chang S, Li S, Li Y., BMC Plant Biol 15(), 2015
PMID: 25848810
Regulation of amino acid metabolic enzymes and transporters in plants.
Pratelli R, Pilot G., J Exp Bot 65(19), 2014
PMID: 25114014
Uptake and partitioning of amino acids and peptides.
Tegeder M, Rentsch D., Mol Plant 3(6), 2010
PMID: 21081651
Potassium channels in barley: cloning, functional characterization and expression analyses in relation to leaf growth and development.
Boscari A, Clément M, Volkov V, Golldack D, Hybiak J, Miller AJ, Amtmann A, Fricke W., Plant Cell Environ 32(12), 2009
PMID: 19682291
Genome-wide transcriptional analysis of salinity stressed japonica and indica rice genotypes during panicle initiation stage.
Walia H, Wilson C, Zeng L, Ismail AM, Condamine P, Close TJ., Plant Mol Biol 63(5), 2007
PMID: 17160619
HvPIP1;6, a barley (Hordeum vulgare L.) plasma membrane water channel particularly expressed in growing compared with non-growing leaf tissues.
Wei W, Alexandersson E, Golldack D, Miller AJ, Kjellbom PO, Fricke W., Plant Cell Physiol 48(8), 2007
PMID: 17602190
Interaction of nitrogen nutrition and salinity in Grey poplar (Populus tremula x alba).
Ehlting B, Dluzniewska P, Dietrich H, Selle A, Teuber M, Hänsch R, Nehls U, Polle A, Schnitzler JP, Rennenberg H, Gessler A., Plant Cell Environ 30(7), 2007
PMID: 17547652
Salt-dependent regulation of chloride channel transcripts in rice
Diedhiou CJ, Golldack D., Plant Sci 170(4), 2006
PMID: IND43813823
Cold acclimation induced genes of trifoliate orange (Poncirus trifoliata).
Zhang CK, Lang P, Dane F, Ebel RC, Singh NK, Locy RD, Dozier WA., Plant Cell Rep 23(10-11), 2005
PMID: 15449021
Identification of cold acclimated genes in leaves of Citrus unshiu by mRNA differential display.
Lang P, Zhang CK, Ebel RC, Dane F, Dozier WA., Gene 359(), 2005
PMID: 16125877
Transcript profiling of salinity stress responses by large-scale expressed sequence tag analysis in Mesembryanthemum crystallinum.
Kore-eda S, Cushman MA, Akselrod I, Bufford D, Fredrickson M, Clark E, Cushman JC., Gene 341(), 2004
PMID: 15474291

26 References

Daten bereitgestellt von Europe PubMed Central.

Improved method for high efficiency transformation of intact yeast cells.
Gietz D, St Jean A, Woods RA, Schiestl RH., Nucleic Acids Res. 20(6), 1992
PMID: 1561104
The molecular genetics of nitrate assimilation in fungi and plants.
Crawford NM, Arst HN Jr., Annu. Rev. Genet. 27(), 1993
PMID: 8122899
ANT1, an aromatic and neutral amino acid transporter in Arabidopsis.
Chen L, Ortiz-Lopez A, Jung A, Bush DR., Plant Physiol. 125(4), 2001
PMID: 11299361
A simple method for displaying the hydropathic character of a protein.
Kyte J, Doolittle RF., J. Mol. Biol. 157(1), 1982
PMID: 7108955
Amino acid transporters in plants.
Ortiz-Lopez A, Chang H, Bush DR., Biochim. Biophys. Acta 1465(1-2), 2000
PMID: 10748260
Preferential expression of an ammonium transporter and of two putative nitrate transporters in root hairs of tomato.
Lauter FR, Ninnemann O, Bucher M, Riesmeier JW, Frommer WB., Proc. Natl. Acad. Sci. U.S.A. 93(15), 1996
PMID: 8755617
Enzyme redundancy and the importance of 2-oxoglutarate in higher plant ammonium assimilation.
Lancien M, Gadal P, Hodges M., Plant Physiol. 123(3), 2000
PMID: 10889231
Seed and vascular expression of a high-affinity transporter for cationic amino acids in Arabidopsis.
Frommer WB, Hummel S, Unseld M, Ninnemann O., Proc. Natl. Acad. Sci. U.S.A. 92(26), 1995
PMID: 8618839
The herbicide sensitivity gene CHL1 of Arabidopsis encodes a nitrate-inducible nitrate transporter.
Tsay YF, Schroeder JI, Feldmann KA, Crawford NM., Cell 72(5), 1993
PMID: 8453665
TRANSPORTERS RESPONSIBLE FOR THE UPTAKE AND PARTITIONING OF NITROGENOUS SOLUTES.
Williams L, Miller A., Annu. Rev. Plant Physiol. Plant Mol. Biol. 52(), 2001
PMID: 11337412
Nitrate transporters in plants: structure, function and regulation.
Forde BG., Biochim. Biophys. Acta 1465(1-2), 2000
PMID: 10748256
Cloning and functional characterization of a Brassica napus transporter that is able to transport nitrate and histidine.
Zhou JJ, Theodoulou FL, Muldin I, Ingemarsson B, Miller AJ., J. Biol. Chem. 273(20), 1998
PMID: 9575142
Biological functions of proline in morphogenesis and osmotolerance revealed in antisense transgenic Arabidopsis thaliana.
Nanjo T, Kobayashi M, Yoshiba Y, Sanada Y, Wada K, Tsukaya H, Kakubari Y, Yamaguchi-Shinozaki K, Shinozaki K., Plant J. 18(2), 1999
PMID: 10363370
The histidine permease gene (HIP1) of Saccharomyces cerevisiae.
Tanaka J, Fink GR., Gene 38(1-3), 1985
PMID: 3905514
Regulation of cell-specific inositol metabolism and transport in plant salinity tolerance.
Nelson DE, Rammesmayer G, Bohnert HJ., Plant Cell 10(5), 1998
PMID: 9596634
PLANT CELLULAR AND MOLECULAR RESPONSES TO HIGH SALINITY.
Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ., Annu. Rev. Plant Physiol. Plant Mol. Biol. 51(), 2000
PMID: 15012199

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 12956527
PubMed | Europe PMC

Suchen in

Google Scholar