The Medicago truncatula sucrose synthase gene MtSucS1 is activated both in the infected region of root nodules and in the cortex of roots colonized by arbuscular mycorrhizal fungi

Hohnjec N, Perlick AM, Pühler A, Küster H (2003)
Mol Plant Microbe Interact 16(10): 903-915.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Hohnjec, N.; Perlick, A. M.; Pühler, AlfredUniBi ; Küster, Helge
Abstract / Bemerkung
The MtSucS1 gene encodes a sucrose synthase (EC 2.4.1.13) in the model legume Medicago truncatula. To determine the expression pattern of this gene in different organs and in particular during root endosymbioses, we transformed M. truncatula with specific regions of MtSucS1 fused to the gusAint reporter gene. These fusions directed an induction to the vasculature of leaves, stems, and roots as well as to flowers, developing seeds, young pods, and germinating seedlings. In root nodules, strong promoter activity occurred in the infected cells of the nitrogen-fixing zone but was additionally observed in the meristematic region, the prefixing zone, and the inner cortex, including the vasculature. Concerning endomycorrhizal roots, the MtSucS1 promoter mediated strongest expression in cortical cells harboring arbuscules. Specifically in highly colonized root sections, GUS-staining was furthermore detected in the surrounding cortical cells, irrespective of a direct contact with fungal structures. In accordance with the presence of an orthologous PsSus1 gene, we observed a comparable regulation of MtSucS1 expression in the grain legume Pisum sativum in response to microbial symbionts. Unlike other members of the MtSucS gene family, the presence of rhizobial or Glomus microsymbionts significantly altered and enhanced MtSucS1 gene expression, leading us to propose that MtSucS1 is involved in generating sink-strength, not only in root nodules but also in mycorrhizal roots.
Stichworte
transgenic Medicago truncatula; plants; assimilate partitioning; phloem loading
Erscheinungsjahr
2003
Zeitschriftentitel
Mol Plant Microbe Interact
Band
16
Ausgabe
10
Seite(n)
903-915
ISSN
0894-0282
Page URI
https://pub.uni-bielefeld.de/record/1610193

Zitieren

Hohnjec N, Perlick AM, Pühler A, Küster H. The Medicago truncatula sucrose synthase gene MtSucS1 is activated both in the infected region of root nodules and in the cortex of roots colonized by arbuscular mycorrhizal fungi. Mol Plant Microbe Interact. 2003;16(10):903-915.
Hohnjec, N., Perlick, A. M., Pühler, A., & Küster, H. (2003). The Medicago truncatula sucrose synthase gene MtSucS1 is activated both in the infected region of root nodules and in the cortex of roots colonized by arbuscular mycorrhizal fungi. Mol Plant Microbe Interact, 16(10), 903-915. https://doi.org/10.1094/MPMI.2003.16.10.903
Hohnjec, N., Perlick, A. M., Pühler, Alfred, and Küster, Helge. 2003. “The Medicago truncatula sucrose synthase gene MtSucS1 is activated both in the infected region of root nodules and in the cortex of roots colonized by arbuscular mycorrhizal fungi”. Mol Plant Microbe Interact 16 (10): 903-915.
Hohnjec, N., Perlick, A. M., Pühler, A., and Küster, H. (2003). The Medicago truncatula sucrose synthase gene MtSucS1 is activated both in the infected region of root nodules and in the cortex of roots colonized by arbuscular mycorrhizal fungi. Mol Plant Microbe Interact 16, 903-915.
Hohnjec, N., et al., 2003. The Medicago truncatula sucrose synthase gene MtSucS1 is activated both in the infected region of root nodules and in the cortex of roots colonized by arbuscular mycorrhizal fungi. Mol Plant Microbe Interact, 16(10), p 903-915.
N. Hohnjec, et al., “The Medicago truncatula sucrose synthase gene MtSucS1 is activated both in the infected region of root nodules and in the cortex of roots colonized by arbuscular mycorrhizal fungi”, Mol Plant Microbe Interact, vol. 16, 2003, pp. 903-915.
Hohnjec, N., Perlick, A.M., Pühler, A., Küster, H.: The Medicago truncatula sucrose synthase gene MtSucS1 is activated both in the infected region of root nodules and in the cortex of roots colonized by arbuscular mycorrhizal fungi. Mol Plant Microbe Interact. 16, 903-915 (2003).
Hohnjec, N., Perlick, A. M., Pühler, Alfred, and Küster, Helge. “The Medicago truncatula sucrose synthase gene MtSucS1 is activated both in the infected region of root nodules and in the cortex of roots colonized by arbuscular mycorrhizal fungi”. Mol Plant Microbe Interact 16.10 (2003): 903-915.

50 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Insights into the complex role of GRAS transcription factors in the arbuscular mycorrhiza symbiosis.
Hartmann RM, Schaepe S, Nübel D, Petersen AC, Bertolini M, Vasilev J, Küster H, Hohnjec N., Sci Rep 9(1), 2019
PMID: 30833646
Regulation of Resource Partitioning Coordinates Nitrogen and Rhizobia Responses and Autoregulation of Nodulation in Medicago truncatula.
Lagunas B, Achom M, Bonyadi-Pour R, Pardal AJ, Richmond BL, Sergaki C, Vázquez S, Schäfer P, Ott S, Hammond J, Gifford ML., Mol Plant 12(6), 2019
PMID: 30953787
Transgene silencing of sucrose synthase in alfalfa (Medicago sativa L.) stem vascular tissue suggests a role for invertase in cell wall cellulose synthesis.
Samac DA, Bucciarelli B, Miller SS, Yang SS, O'Rourke JA, Shin S, Vance CP., BMC Plant Biol 15(), 2015
PMID: 26627884
The sucrose transporter SlSUT2 from tomato interacts with brassinosteroid functioning and affects arbuscular mycorrhiza formation.
Bitterlich M, Krügel U, Boldt-Burisch K, Franken P, Kühn C., Plant J 78(5), 2014
PMID: 24654931
Biotrophic transportome in mutualistic plant-fungal interactions.
Casieri L, Ait Lahmidi N, Doidy J, Veneault-Fourrey C, Migeon A, Bonneau L, Courty PE, Garcia K, Charbonnier M, Delteil A, Brun A, Zimmermann S, Plassard C, Wipf D., Mycorrhiza 23(8), 2013
PMID: 23572325
Genome-wide analysis of the Sus gene family in cotton.
Zou C, Lu C, Shang H, Jing X, Cheng H, Zhang Y, Song G., J Integr Plant Biol 55(7), 2013
PMID: 23691964
Analyses of the sucrose synthase gene family in cotton: structure, phylogeny and expression patterns.
Chen A, He S, Li F, Li Z, Ding M, Liu Q, Rong J., BMC Plant Biol 12(), 2012
PMID: 22694895
The role of carbon in fungal nutrient uptake and transport: implications for resource exchange in the arbuscular mycorrhizal symbiosis.
Fellbaum CR, Mensah JA, Pfeffer PE, Kiers ET, Bücking H., Plant Signal Behav 7(11), 2012
PMID: 22990447
Phosphate import at the arbuscule: just a nutrient?
Yang SY, Paszkowski U., Mol Plant Microbe Interact 24(11), 2011
PMID: 21995797
Reproducible hairy root transformation and spot-inoculation methods to study root symbioses of pea.
Clemow SR, Clairmont L, Madsen LH, Guinel FC., Plant Methods 7(), 2011
PMID: 22172023
Molecular trait indicators: moving beyond phylogeny in arbuscular mycorrhizal ecology.
Gamper HA, van der Heijden MG, Kowalchuk GA., New Phytol 185(1), 2010
PMID: 19863727
Nodule-enhanced expression of a sucrose phosphate synthase gene member (MsSPSA) has a role in carbon and nitrogen metabolism in the nodules of alfalfa (Medicago sativa L.).
Aleman L, Ortega JL, Martinez-Grimes M, Seger M, Holguin FO, Uribe DJ, Garcia-Ibilcieta D, Sengupta-Gopalan C., Planta 231(2), 2010
PMID: 19898977
The signal peptide of the Medicago truncatula modular nodulin MtNOD25 operates as an address label for the specific targeting of proteins to nitrogen-fixing symbiosomes.
Hohnjec N, Lenz F, Fehlberg V, Vieweg MF, Baier MC, Hause B, Küster H., Mol Plant Microbe Interact 22(1), 2009
PMID: 19061403
Presymbiotic factors released by the arbuscular mycorrhizal fungus Gigaspora margarita induce starch accumulation in Lotus japonicus roots.
Gutjahr C, Novero M, Guether M, Montanari O, Udvardi M, Bonfante P., New Phytol 183(1), 2009
PMID: 19555369
A mycorrhizal-specific ammonium transporter from Lotus japonicus acquires nitrogen released by arbuscular mycorrhizal fungi.
Guether M, Neuhäuser B, Balestrini R, Dynowski M, Ludewig U, Bonfante P., Plant Physiol 150(1), 2009
PMID: 19329566
Metabolite profiling of mycorrhizal roots of Medicago truncatula.
Schliemann W, Ammer C, Strack D., Phytochemistry 69(1), 2008
PMID: 17706732
Transcriptional profiling of Medicago truncatula meristematic root cells.
Holmes P, Goffard N, Weiller GF, Rolfe BG, Imin N., BMC Plant Biol 8(), 2008
PMID: 18302802
Evidence for transcriptional and post-translational regulation of sucrose synthase in pea nodules by the cellular redox state.
Marino D, Hohnjec N, Küster H, Moran JF, González EM, Arrese-Igor C., Mol Plant Microbe Interact 21(5), 2008
PMID: 18393622
Apoplastic invertases: Multi-faced players in the arbuscular mycorrhization.
Schaarschmidt S, Hause B., Plant Signal Behav 3(5), 2008
PMID: 19841657
Arbuscular mycorrhiza: the mother of plant root endosymbioses.
Parniske M., Nat Rev Microbiol 6(10), 2008
PMID: 18794914
TILLING mutants of Lotus japonicus reveal that nitrogen assimilation and fixation can occur in the absence of nodule-enhanced sucrose synthase.
Horst I, Welham T, Kelly S, Kaneko T, Sato S, Tabata S, Parniske M, Wang TL., Plant Physiol 144(2), 2007
PMID: 17468221
Medicago truncatula root nodule proteome analysis reveals differential plant and bacteroid responses to drought stress.
Larrainzar E, Wienkoop S, Weckwerth W, Ladrera R, Arrese-Igor C, González EM., Plant Physiol 144(3), 2007
PMID: 17545507
Spatial and temporal organization of sucrose metabolism in Lotus japonicus nitrogen-fixing nodules suggests a role for the elusive alkaline/neutral invertase.
Flemetakis E, Efrose RC, Ott T, Stedel C, Aivalakis G, Udvardi MK, Katinakis P., Plant Mol Biol 62(1-2), 2006
PMID: 16897473
Metabolite profiles of nodulated alfalfa plants indicate that distinct stages of nodule organogenesis are accompanied by global physiological adaptations.
Barsch A, Tellström V, Patschkowski T, Küster H, Niehaus K., Mol Plant Microbe Interact 19(9), 2006
PMID: 16941904
Signaling in the arbuscular mycorrhizal symbiosis.
Harrison MJ., Annu Rev Microbiol 59(), 2005
PMID: 16153162
MtENOD11 gene activation during rhizobial infection and mycorrhizal arbuscule development requires a common AT-rich-containing regulatory sequence.
Boisson-Dernier A, Andriankaja A, Chabaud M, Niebel A, Journet EP, Barker DG, de Carvalho-Niebel F., Mol Plant Microbe Interact 18(12), 2005
PMID: 16478046
Expression profiling in Medicago truncatula identifies more than 750 genes differentially expressed during nodulation, including many potential regulators of the symbiotic program.
El Yahyaoui F, Küster H, Ben Amor B, Hohnjec N, Pühler A, Becker A, Gouzy J, Vernié T, Gough C, Niebel A, Godiard L, Gamas P., Plant Physiol 136(2), 2004
PMID: 15466239
Transcriptome profiling in root nodules and arbuscular mycorrhiza identifies a collection of novel genes induced during Medicago truncatula root endosymbioses.
Manthey K, Krajinski F, Hohnjec N, Firnhaber C, Pühler A, Perlick AM, Küster H., Mol Plant Microbe Interact 17(10), 2004
PMID: 15497399

70 References

Daten bereitgestellt von Europe PubMed Central.

Sucrose synthase and enolase expression in actinorhizal nodules of Alnus glutinosa: comparison with legume nodules.
van Ghelue M, Ribeiro A, Solheim B, Akkermans AD, Bisseling T, Pawlowski K., Mol. Gen. Genet. 250(4), 1996
PMID: 8602161
A New Medicago truncatula Line with Superior in Vitro Regeneration, Transformation, and Symbiotic Properties Isolated Through Cell Culture Selection
Hoffmann, Molecular Plant-Microbe Interactions 10(3), 1997
Medicago truncatula ENOD11: a novel RPRP-encoding early nodulin gene expressed during mycorrhization in arbuscule-containing cells.
Journet EP, El-Gachtouli N, Vernoud V, de Billy F, Pichon M, Dedieu A, Arnould C, Morandi D, Barker DG, Gianinazzi-Pearson V., Mol. Plant Microbe Interact. 14(6), 2001
PMID: 11386369
Rapid and efficient transformation of diploid Medicago truncatula and Medicago sativa ssp. falcata lines improved in somatic embryogenesis
Trinh, Plant Cell Reports 17(5), 1998
Legume nodule organogenesis
COHN, Trends in Plant Science 3(3), 1998
Regulation of arbuscule formation by carbon in the plant
Blee, The Plant Journal 16(5), 1998
Mutations at therug4locus alter the carbon and nitrogen metabolism of pea plants through an effect on sucrose synthase
Craig, The Plant Journal 17(4), 1999
Translocation and utilization of fungal storage lipid in the arbuscular mycorrhizal symbiosis.
Bago B, Zipfel W, Williams RM, Jun J, Arreola R, Lammers PJ, Pfeffer PE, Shachar-Hill Y., Plant Physiol. 128(1), 2002
PMID: 11788757
Multiple, distinct isoforms of sucrose synthase in pea.
Barratt DH, Barber L, Kruger NJ, Smith AM, Wang TL, Martin C., Plant Physiol. 127(2), 2001
PMID: 11598239
Plant sugar-response pathways. Part of a complex regulatory web.
Gibson SI., Plant Physiol. 124(4), 2000
PMID: 11115871
Sucrose synthase in legume nodules is essential for nitrogen fixation
Gordon AJ, Minchin FR, James CL, Komina O., Plant Physiol. 120(3), 1999
PMID: 10398723
Carbon metabolism and transport in arbuscular mycorrhizas.
Bago B, Pfeffer PE, Shachar-Hill Y., Plant Physiol. 124(3), 2000
PMID: 11080273
Sugar Levels Modulate Differential Expression of Maize Sucrose Synthase Genes.
Koch KE, Nolte KD, Duke ER, McCarty DR, Avigne WT., Plant Cell 4(1), 1992
PMID: 12297629
CARBOHYDRATE-MODULATED GENE EXPRESSION IN PLANTS.
Koch KE., Annu. Rev. Plant Physiol. Plant Mol. Biol. 47(), 1996
PMID: 15012299
MOLECULAR AND CELLULAR ASPECTS OF THE ARBUSCULAR MYCORRHIZAL SYMBIOSIS.
Harrison MJ., Annu. Rev. Plant Physiol. Plant Mol. Biol. 50(), 1999
PMID: 15012214
Separate cis sequences and trans factors direct metabolic and developmental regulation of a potato tuber storage protein gene.
Grierson C, Du JS, de Torres Zabala M, Beggs K, Smith C, Holdsworth M, Bevan M., Plant J. 5(6), 1994
PMID: 8054988
Localization of sucrose synthase in soybean root nodules
GORDON, New Phytologist 122(1), 1992
Expression Map for Genes Involved in Nitrogen and Carbon Metabolism in Alfalfa Root Nodules
Trepp, Molecular Plant-Microbe Interactions 12(6), 1999
Transcriptional changes in response to arbuscular mycorrhiza development in the model plant Medicago truncatula.
Wulf A, Manthey K, Doll J, Perlick AM, Linke B, Bekel T, Meyer F, Franken P, Kuster H, Krajinski F., Mol. Plant Microbe Interact. 16(4), 2003
PMID: 12744459
Sucrose Transport in Higher Plants
WARD, International Review of Cytology 178(), 1997
Sucrose synthase of soybean nodules.
Morell M, Copeland L., Plant Physiol. 78(1), 1985
PMID: 16664189
Sugar transporters in plant biology.
Bush DR., Curr. Opin. Plant Biol. 2(3), 1999
PMID: 10375567
The arbuscular mycorrhizal symbiosis: an underground association
HARRISON, Trends in Plant Science 2(2), 1997
Regulation of Sucrose Metabolism in Higher Plants: Localization and Regulation of Activity of Key Enzymes
Winter, Critical Reviews in Plant Sciences 19(1), 2000
An improved protocol for eliminating endogenous $beta;-glucuronidase background in barley
HANSCH, Plant Science 105(1), 1995
Transformation of Medicago truncatula via infiltration of seedlings or flowering plants with Agrobacterium.
Trieu AT, Burleigh SH, Kardailsky IV, Maldonado-Mendoza IE, Versaw WK, Blaylock LA, Shin H, Chiou TJ, Katagi H, Dewbre GR, Weigel D, Harrison MJ., Plant J. 22(6), 2000
PMID: 10886773
The TIGR gene indices: reconstruction and representation of expressed gene sequences.
Quackenbush J, Liang F, Holt I, Pertea G, Upton J., Nucleic Acids Res. 28(1), 2000
PMID: 10592205
PHOSPHATE ACQUISITION.
Raghothama KG., Annu. Rev. Plant Physiol. Plant Mol. Biol. 50(), 1999
PMID: 15012223
SUGAR-INDUCED SIGNAL TRANSDUCTION IN PLANTS.
Smeekens S., Annu. Rev. Plant Physiol. Plant Mol. Biol. 51(), 2000
PMID: 15012186
Maize Shrunken-1 intron and exon regions increase gene expression in maize protoplasts
Clancy, Plant Science 98(2), 1994
The broad bean nodulin VfENOD18 is a member of a novel family of plant proteins with homologies to the bacterial MJ0577 superfamily.
Hohnjec N, Kuster H, Albus U, Frosch SC, Becker JD, Puhler A, Perlick AM, Fruhling M., Mol. Gen. Genet. 264(3), 2000
PMID: 11085263

Bago, Plant and Soil 244(1/2), 2002
Phosphate transport in plants
Smith, Plant and Soil 248(1/2), 2003
Intrinsic GUS-like activities in seed plants
Hu, Plant Cell Reports 9(1), 1990
Nodulation and nitrogen fixation mutants of pea, Pisum sativum.
Engvild KC., Theor. Appl. Genet. 74(6), 1987
PMID: IND87089897
The Shrunken gene on chromosome 9 of Zea mays L is expressed in various plant tissues and encodes an anaerobic protein.
Springer B, Werr W, Starlinger P, Bennett DC, Zokolica M, Freeling M., Mol. Gen. Genet. 205(3), 1986
PMID: 2436026
The enzymatic deficiency conditioned by the shrunken-1 mutations in maize.
Chourey PS, Nelson OE., Biochem. Genet. 14(11-12), 1976
PMID: 1016220
NewAgrobacterium helper plasmids for gene transfer to plants
Hood, Transgenic Research 2(4), 1993
Strategies of arbuscular mycorrhizal fungi when infecting host plants.
Bonfante P, Perotto S., New Phytol. 130(1), 1995
PMID: IND20555279
Enzymatic studies on the metabolism of vesicular-arbuscular mycorrhizas. V. Is H+-ATPase a component of ATP-hydrolysing enzyme activities in plant-fungus interfaces?
GIANINAZZI-PEARSON, New Phytologist 117(1), 1991
Carbohydrates and carbohydrate enzymes in developing cotton ovules
Hendrix, Physiologia Plantarum 78(1), 1990
Nodule-specific gene expression
Pawlowski, Physiologia Plantarum 99(4), 1997
Genetic mapping of Rhizobium meliloti.
Meade HM, Signer ER., Proc. Natl. Acad. Sci. U.S.A. 74(5), 1977
PMID: 266730
The complete nucleotide sequence of an infectious clone of cauliflower mosaic virus by M13mp7 shotgun sequencing.
Gardner RC, Howarth AJ, Hahn P, Brown-Luedi M, Shepherd RJ, Messing J., Nucleic Acids Res. 9(12), 1981
PMID: 6269062
Development of a vesicular-arbuscular mycorrhiza in bean roots
Holley, Botany 57(19), 1979
Medicago truncatula, a model plant for studying the molecular genetics of theRhizobium-legume symbiosis
Barker, Plant Molecular Biology Reporter 8(1), 1990
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 14558692
PubMed | Europe PMC

Suchen in

Google Scholar