Global changes in gene expression in Sinorhizobium meliloti 1021 under microoxic and symbiotic conditions

Becker A, Berges H, Krol E, Bruand C, Rüberg S, Capela D, Lauber E, Meilhoc E, Ampe F, de Bruijn FJ, Fourment J, et al. (2004)

Zeitschriftenaufsatz | Veröffentlicht | Englisch
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Becker, Anke; Berges, H.; Krol, Elizaveta; Bruand, C.; Rüberg, Silvia; Capela, D.; Lauber, E.; Meilhoc, E.; Ampe, F.; de Bruijn, F. J.; Fourment, J.; Francez-Charlot, A.
root nodule; macroarray
Page URI


Becker A, Berges H, Krol E, et al. Global changes in gene expression in Sinorhizobium meliloti 1021 under microoxic and symbiotic conditions. MOLECULAR PLANT-MICROBE INTERACTIONS. 2004;17(3):292-303.
Becker, A., Berges, H., Krol, E., Bruand, C., Rüberg, S., Capela, D., Lauber, E., et al. (2004). Global changes in gene expression in Sinorhizobium meliloti 1021 under microoxic and symbiotic conditions. MOLECULAR PLANT-MICROBE INTERACTIONS, 17(3), 292-303.
Becker, Anke, Berges, H., Krol, Elizaveta, Bruand, C., Rüberg, Silvia, Capela, D., Lauber, E., et al. 2004. “Global changes in gene expression in Sinorhizobium meliloti 1021 under microoxic and symbiotic conditions”. MOLECULAR PLANT-MICROBE INTERACTIONS 17 (3): 292-303.
Becker, A., Berges, H., Krol, E., Bruand, C., Rüberg, S., Capela, D., Lauber, E., Meilhoc, E., Ampe, F., de Bruijn, F. J., et al. (2004). Global changes in gene expression in Sinorhizobium meliloti 1021 under microoxic and symbiotic conditions. MOLECULAR PLANT-MICROBE INTERACTIONS 17, 292-303.
Becker, A., et al., 2004. Global changes in gene expression in Sinorhizobium meliloti 1021 under microoxic and symbiotic conditions. MOLECULAR PLANT-MICROBE INTERACTIONS, 17(3), p 292-303.
A. Becker, et al., “Global changes in gene expression in Sinorhizobium meliloti 1021 under microoxic and symbiotic conditions”, MOLECULAR PLANT-MICROBE INTERACTIONS, vol. 17, 2004, pp. 292-303.
Becker, A., Berges, H., Krol, E., Bruand, C., Rüberg, S., Capela, D., Lauber, E., Meilhoc, E., Ampe, F., de Bruijn, F.J., Fourment, J., Francez-Charlot, A., Kahn, D., Küster, H., Liebe, C., Pühler, A., Weidner, S., Batut, J.: Global changes in gene expression in Sinorhizobium meliloti 1021 under microoxic and symbiotic conditions. MOLECULAR PLANT-MICROBE INTERACTIONS. 17, 292-303 (2004).
Becker, Anke, Berges, H., Krol, Elizaveta, Bruand, C., Rüberg, Silvia, Capela, D., Lauber, E., Meilhoc, E., Ampe, F., de Bruijn, F. J., Fourment, J., Francez-Charlot, A., Kahn, D., Küster, Helge, Liebe, C., Pühler, Alfred, Weidner, Stefan, and Batut, J. “Global changes in gene expression in Sinorhizobium meliloti 1021 under microoxic and symbiotic conditions”. MOLECULAR PLANT-MICROBE INTERACTIONS 17.3 (2004): 292-303.

143 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Rhizobia: from saprophytes to endosymbionts.
Poole P, Ramachandran V, Terpolilli J., Nat Rev Microbiol 16(5), 2018
PMID: 29379215
Select and resequence reveals relative fitness of bacteria in symbiotic and free-living environments.
Burghardt LT, Epstein B, Guhlin J, Nelson MS, Taylor MR, Young ND, Sadowsky MJ, Tiffin P., Proc Natl Acad Sci U S A 115(10), 2018
PMID: 29453274
Use of RNA Immunoprecipitation Method for Determining Sinorhizobium meliloti RNA-Hfq Protein Associations In Vivo.
Gao M, Benge A, Mesa JM, Javier R, Liu FX., Biol Proced Online 20(), 2018
PMID: 29743820
NsrA, a Predicted β-Barrel Outer Membrane Protein Involved in Plant Signal Perception and the Control of Secondary Infection in Sinorhizobium meliloti.
Garnerone AM, Sorroche F, Zou L, Mathieu-Demazière C, Tian CF, Masson-Boivin C, Batut J., J Bacteriol 200(11), 2018
PMID: 29531182
Coordinated regulation of core and accessory genes in the multipartite genome of Sinorhizobium fredii.
Jiao J, Ni M, Zhang B, Zhang Z, Young JPW, Chan TF, Chen WX, Lam HM, Tian CF., PLoS Genet 14(5), 2018
PMID: 29795552
Regulation of Polyhydroxybutyrate Accumulation in Sinorhizobium meliloti by the Trans-Encoded Small RNA MmgR.
Lagares A, Borella GC, Linne U, Becker A, Valverde C., J Bacteriol 199(8), 2017
PMID: 28167519
Morphotype of bacteroids in different legumes correlates with the number and type of symbiotic NCR peptides.
Montiel J, Downie JA, Farkas A, Bihari P, Herczeg R, Bálint B, Mergaert P, Kereszt A, Kondorosi É., Proc Natl Acad Sci U S A 114(19), 2017
PMID: 28438996
Ferrous iron efflux systems in bacteria.
Pi H, Helmann JD., Metallomics 9(7), 2017
PMID: 28604884
Transcriptomic Insight in the Control of Legume Root Secondary Infection by the Sinorhizobium meliloti Transcriptional Regulator Clr.
Zou L, Gastebois A, Mathieu-Demazière C, Sorroche F, Masson-Boivin C, Batut J, Garnerone AM., Front Microbiol 8(), 2017
PMID: 28729859
The Divided Bacterial Genome: Structure, Function, and Evolution.
diCenzo GC, Finan TM., Microbiol Mol Biol Rev 81(3), 2017
PMID: 28794225
Transcriptomic Studies of the Effect of nod Gene-Inducing Molecules in Rhizobia: Different Weapons, One Purpose.
Jiménez-Guerrero I, Acosta-Jurado S, Del Cerro P, Navarro-Gómez P, López-Baena FJ, Ollero FJ, Vinardell JM, Pérez-Montaño F., Genes (Basel) 9(1), 2017
PMID: 29267254
Biodegradation of 3,3',4,4'-tetrachlorobiphenyl by Sinorhizobium meliloti NM.
Wang X, Teng Y, Luo Y, Dick RP., Bioresour Technol 201(), 2016
PMID: 26679048
Chemotaxis signaling systems in model beneficial plant-bacteria associations.
Scharf BE, Hynes MF, Alexandre GM., Plant Mol Biol 90(6), 2016
PMID: 26797793
A consolidated analysis of the physiologic and molecular responses induced under acid stress in the legume-symbiont model-soil bacterium Sinorhizobium meliloti.
Draghi WO, Del Papa MF, Hellweg C, Watt SA, Watt TF, Barsch A, Lozano MJ, Lagares A, Salas ME, López JL, Albicoro FJ, Nilsson JF, Torres Tejerizo GA, Luna MF, Pistorio M, Boiardi JL, Pühler A, Weidner S, Niehaus K, Lagares A., Sci Rep 6(), 2016
PMID: 27404346
Metabolic modelling reveals the specialization of secondary replicons for niche adaptation in Sinorhizobium meliloti.
diCenzo GC, Checcucci A, Bazzicalupo M, Mengoni A, Viti C, Dziewit L, Finan TM, Galardini M, Fondi M., Nat Commun 7(), 2016
PMID: 27447951
Regulation of fixLJ by Hfq Controls Symbiotically Important Genes in Sinorhizobium meliloti.
Gao M, Nguyen H, Salas González I, Teplitski M., Mol Plant Microbe Interact 29(11), 2016
PMID: 27712144
Modulation of Sinorhizobium meliloti quorum sensing by Hfq-mediated post-transcriptional regulation of ExpR.
Gao M, Tang M, Guerich L, Salas-Gonzalez I, Teplitski M., Environ Microbiol Rep 7(1), 2015
PMID: 25382642
Rhizobia and their bio-partners as novel drivers for functional remediation in contaminated soils.
Teng Y, Wang X, Li L, Li Z, Luo Y., Front Plant Sci 6(), 2015
PMID: 25699064
A stress-induced small RNA modulates alpha-rhizobial cell cycle progression.
Robledo M, Frage B, Wright PR, Becker A., PLoS Genet 11(4), 2015
PMID: 25923724
Genomic characterization of Sinorhizobium meliloti AK21, a wild isolate from the Aral Sea Region.
Molina-Sánchez MD, López-Contreras JA, Toro N, Fernández-López M., Springerplus 4(), 2015
PMID: 26090306
Nitrogen-Fixing Nodules Are an Important Source of Reduced Sulfur, Which Triggers Global Changes in Sulfur Metabolism in Lotus japonicus.
Kalloniati C, Krompas P, Karalias G, Udvardi MK, Rennenberg H, Herschbach C, Flemetakis E., Plant Cell 27(9), 2015
PMID: 26296963
Planting increases the abundance and structure complexity of soil core functional genes relevant to carbon and nitrogen cycling.
Wang F, Liang Y, Jiang Y, Yang Y, Xue K, Xiong J, Zhou J, Sun B., Sci Rep 5(), 2015
PMID: 26396042
De novo transcriptome analysis of Medicago falcata reveals novel insights about the mechanisms underlying abiotic stress-responsive pathway.
Miao Z, Xu W, Li D, Hu X, Liu J, Zhang R, Tong Z, Dong J, Su Z, Zhang L, Sun M, Li W, Du Z, Hu S, Wang T., BMC Genomics 16(), 2015
PMID: 26481731
An RNA sequencing transcriptome analysis reveals novel insights into molecular aspects of the nitrate impact on the nodule activity of Medicago truncatula.
Cabeza R, Koester B, Liese R, Lingner A, Baumgarten V, Dirks J, Salinas-Riester G, Pommerenke C, Dittert K, Schulze J., Plant Physiol 164(1), 2014
PMID: 24285852
The CtrA phosphorelay integrates differentiation and communication in the marine alphaproteobacterium Dinoroseobacter shibae.
Wang H, Ziesche L, Frank O, Michael V, Martin M, Petersen J, Schulz S, Wagner-Döbler I, Tomasch J., BMC Genomics 15(), 2014
PMID: 24524855
Spatial variability of bacteria in the rhizosphere of Elsholtzia splendens under Cu contamination.
Yuan X, Luan J, Shi J., Environ Sci Pollut Res Int 21(16), 2014
PMID: 24801294
Genetic basis for denitrification in Ensifer meliloti.
Torres MJ, Rubia MI, de la Peña TC, Pueyo JJ, Bedmar EJ, Delgado MJ., BMC Microbiol 14(), 2014
PMID: 24888981
RNA sequencing analysis of the broad-host-range strain Sinorhizobium fredii NGR234 identifies a large set of genes linked to quorum sensing-dependent regulation in the background of a traI and ngrI deletion mutant.
Krysciak D, Grote J, Rodriguez Orbegoso M, Utpatel C, Förstner KU, Li L, Schmeisser C, Krishnan HB, Streit WR., Appl Environ Microbiol 80(18), 2014
PMID: 25002423
Examination of prokaryotic multipartite genome evolution through experimental genome reduction.
diCenzo GC, MacLean AM, Milunovic B, Golding GB, Finan TM., PLoS Genet 10(10), 2014
PMID: 25340565
Two Sinorhizobium meliloti glutaredoxins regulate iron metabolism and symbiotic bacteroid differentiation.
Benyamina SM, Baldacci-Cresp F, Couturier J, Chibani K, Hopkins J, Bekki A, de Lajudie P, Rouhier N, Jacquot JP, Alloing G, Puppo A, Frendo P., Environ Microbiol 15(3), 2013
PMID: 22891731
Expression dynamics of the Medicago truncatula transcriptome during the symbiotic interaction with Sinorhizobium meliloti: which role for nitric oxide?
Boscari A, Del Giudice J, Ferrarini A, Venturini L, Zaffini AL, Delledonne M, Puppo A., Plant Physiol 161(1), 2013
PMID: 23136381
Directed construction and analysis of a Sinorhizobium meliloti pSymA deletion mutant library.
Yurgel SN, Mortimer MW, Rice JT, Humann JL, Kahn ML., Appl Environ Microbiol 79(6), 2013
PMID: 23335760
Transport and metabolism in legume-rhizobia symbioses.
Udvardi M, Poole PS., Annu Rev Plant Biol 64(), 2013
PMID: 23451778
Functional analysis of the copy 1 of the fixNOQP operon of Ensifer meliloti under free-living micro-oxic and symbiotic conditions.
Torres MJ, Hidalgo-García A, Bedmar EJ, Delgado MJ., J Appl Microbiol 114(6), 2013
PMID: 23414432
Molecular insights into bacteroid development during Rhizobium-legume symbiosis.
Haag AF, Arnold MF, Myka KK, Kerscher B, Dall'Angelo S, Zanda M, Mergaert P, Ferguson GP., FEMS Microbiol Rev 37(3), 2013
PMID: 22998605
Antimicrobial nodule-specific cysteine-rich peptides induce membrane depolarization-associated changes in the transcriptome of Sinorhizobium meliloti.
Tiricz H, Szucs A, Farkas A, Pap B, Lima RM, Maróti G, Kondorosi É, Kereszt A., Appl Environ Microbiol 79(21), 2013
PMID: 23995935
Sinorhizobium meliloti Nia is a P(1B-5)-ATPase expressed in the nodule during plant symbiosis and is involved in Ni and Fe transport.
Zielazinski EL, González-Guerrero M, Subramanian P, Stemmler TL, Argüello JM, Rosenzweig AC., Metallomics 5(12), 2013
PMID: 24056637
Inhibition of nitrogen fixation in symbiotic Medicago truncatula upon Cd exposure is a local process involving leghaemoglobin.
Marino D, Damiani I, Gucciardo S, Mijangos I, Pauly N, Puppo A., J Exp Bot 64(18), 2013
PMID: 24151304
Biochemical and functional characterization of SpdA, a 2', 3'cyclic nucleotide phosphodiesterase from Sinorhizobium meliloti.
Mathieu-Demazière C, Poinsot V, Masson-Boivin C, Garnerone AM, Batut J., BMC Microbiol 13(), 2013
PMID: 24279347
Small RNAs of the Bradyrhizobium/Rhodopseudomonas lineage and their analysis.
Madhugiri R, Pessi G, Voss B, Hahn J, Sharma CM, Reinhardt R, Vogel J, Hess WR, Fischer HM, Evguenieva-Hackenberg E., RNA Biol 9(1), 2012
PMID: 22258152
Plant-activated bacterial receptor adenylate cyclases modulate epidermal infection in the Sinorhizobium meliloti-Medicago symbiosis.
Tian CF, Garnerone AM, Mathieu-Demazière C, Masson-Boivin C, Batut J., Proc Natl Acad Sci U S A 109(17), 2012
PMID: 22493242
A comparative genomics screen identifies a Sinorhizobium meliloti 1021 sodM-like gene strongly expressed within host plant nodules.
Queiroux C, Washburn BK, Davis OM, Stewart J, Brewer TE, Lyons MR, Jones KM., BMC Microbiol 12(), 2012
PMID: 22587634
Coevolutionary genetic variation in the legume-rhizobium transcriptome.
Heath KD, Burke PV, Stinchcombe JR., Mol Ecol 21(19), 2012
PMID: 22672103
A Medicago truncatula tobacco retrotransposon insertion mutant collection with defects in nodule development and symbiotic nitrogen fixation.
Pislariu CI, Murray JD, Wen J, Cosson V, Muni RR, Wang M, Benedito VA, Andriankaja A, Cheng X, Jerez IT, Mondy S, Zhang S, Taylor ME, Tadege M, Ratet P, Mysore KS, Chen R, Udvardi MK., Plant Physiol 159(4), 2012
PMID: 22679222
Dual RpoH sigma factors and transcriptional plasticity in a symbiotic bacterium.
Barnett MJ, Bittner AN, Toman CJ, Oke V, Long SR., J Bacteriol 194(18), 2012
PMID: 22773790
Copper starvation-inducible protein for cytochrome oxidase biogenesis in Bradyrhizobium japonicum.
Serventi F, Youard ZA, Murset V, Huwiler S, Bühler D, Richter M, Luchsinger R, Fischer HM, Brogioli R, Niederer M, Hennecke H., J Biol Chem 287(46), 2012
PMID: 23012364
Relationship of Bacillus amyloliquefaciens clades associated with strains DSM 7T and FZB42T: a proposal for Bacillus amyloliquefaciens subsp. amyloliquefaciens subsp. nov. and Bacillus amyloliquefaciens subsp. plantarum subsp. nov. based on complete genome sequence comparisons.
Borriss R, Chen XH, Rueckert C, Blom J, Becker A, Baumgarth B, Fan B, Pukall R, Schumann P, Spröer C, Junge H, Vater J, Pühler A, Klenk HP., Int J Syst Evol Microbiol 61(pt 8), 2011
PMID: 20817842
A Medicago truncatula NADPH oxidase is involved in symbiotic nodule functioning.
Marino D, Andrio E, Danchin EG, Oger E, Gucciardo S, Lambert A, Puppo A, Pauly N., New Phytol 189(2), 2011
PMID: 21155825
Innate immunity effectors and virulence factors in symbiosis.
Kereszt A, Mergaert P, Maróti G, Kondorosi E., Curr Opin Microbiol 14(1), 2011
PMID: 21215682
A highly conserved protein of unknown function in Sinorhizobium meliloti affects sRNA regulation similar to Hfq.
Pandey SP, Minesinger BK, Kumar J, Walker GC., Nucleic Acids Res 39(11), 2011
PMID: 21325267
Nitrate reduction associated with respiration in Sinorhizobium meliloti 2011 is performed by a membrane-bound molybdoenzyme.
Ferroni FM, Rivas MG, Rizzi AC, Lucca ME, Perotti NI, Brondino CD., Biometals 24(5), 2011
PMID: 21432624
Exploring the symbiotic pangenome of the nitrogen-fixing bacterium Sinorhizobium meliloti.
Galardini M, Mengoni A, Brilli M, Pini F, Fioravanti A, Lucas S, Lapidus A, Cheng JF, Goodwin L, Pitluck S, Land M, Hauser L, Woyke T, Mikhailova N, Ivanova N, Daligault H, Bruce D, Detter C, Tapia R, Han C, Teshima H, Mocali S, Bazzicalupo M, Biondi EG., BMC Genomics 12(), 2011
PMID: 21569405
Systems biology of bacterial nitrogen fixation: high-throughput technology and its integrative description with constraint-based modeling.
Resendis-Antonio O, Hernández M, Salazar E, Contreras S, Batallar GM, Mora Y, Encarnación S., BMC Syst Biol 5(), 2011
PMID: 21801415
The rules of engagement in the legume-rhizobial symbiosis.
Oldroyd GE, Murray JD, Poole PS, Downie JA., Annu Rev Genet 45(), 2011
PMID: 21838550
Isovaleryl-homoserine lactone, an unusual branched-chain quorum-sensing signal from the soybean symbiont Bradyrhizobium japonicum.
Lindemann A, Pessi G, Schaefer AL, Mattmann ME, Christensen QH, Kessler A, Hennecke H, Blackwell HE, Greenberg EP, Harwood CS., Proc Natl Acad Sci U S A 108(40), 2011
PMID: 21949379
Denitrification in Sinorhizobium meliloti.
Torres MJ, Rubia MI, Bedmar EJ, Delgado MJ., Biochem Soc Trans 39(6), 2011
PMID: 22103545
Proteomic alterations explain phenotypic changes in Sinorhizobium meliloti lacking the RNA chaperone Hfq.
Barra-Bily L, Fontenelle C, Jan G, Flechard M, Trautwetter A, Pandey SP, Walker GC, Blanco C., J Bacteriol 192(6), 2010
PMID: 20081032
Introducing the bacterial 'chromid': not a chromosome, not a plasmid.
Harrison PW, Lower RP, Kim NK, Young JP., Trends Microbiol 18(4), 2010
PMID: 20080407
Cross-kingdom comparison of transcriptomic adjustments to low-oxygen stress highlights conserved and plant-specific responses.
Mustroph A, Lee SC, Oosumi T, Zanetti ME, Yang H, Ma K, Yaghoubi-Masihi A, Fukao T, Bailey-Serres J., Plant Physiol 152(3), 2010
PMID: 20097791
The Sinorhizobium meliloti RNA chaperone Hfq influences central carbon metabolism and the symbiotic interaction with alfalfa.
Torres-Quesada O, Oruezabal RI, Peregrina A, Jofré E, Lloret J, Rivilla R, Toro N, Jiménez-Zurdo JI., BMC Microbiol 10(), 2010
PMID: 20205931
An integrated proteomics and transcriptomics reference data set provides new insights into the Bradyrhizobium japonicum bacteroid metabolism in soybean root nodules.
Delmotte N, Ahrens CH, Knief C, Qeli E, Koch M, Fischer HM, Vorholt JA, Hennecke H, Pessi G., Proteomics 10(7), 2010
PMID: 20104621
Role of the Sinorhizobium meliloti global regulator Hfq in gene regulation and symbiosis.
Gao M, Barnett MJ, Long SR, Teplitski M., Mol Plant Microbe Interact 23(4), 2010
PMID: 20192823
Characterization of the NifA-RpoN regulon in Rhizobium etli in free life and in symbiosis with Phaseolus vulgaris.
Salazar E, Díaz-Mejía JJ, Moreno-Hagelsieb G, Martínez-Batallar G, Mora Y, Mora J, Encarnación S., Appl Environ Microbiol 76(13), 2010
PMID: 20453139
Role of symbiotic auxotrophy in the Rhizobium-legume symbioses.
Prell J, Bourdès A, Kumar S, Lodwig E, Hosie A, Kinghorn S, White J, Poole P., PLoS One 5(11), 2010
PMID: 21085630
Genomic comparison of Bradyrhizobium japonicum strains with different symbiotic nitrogen-fixing capabilities and other Bradyrhizobiaceae members.
Itakura M, Saeki K, Omori H, Yokoyama T, Kaneko T, Tabata S, Ohwada T, Tajima S, Uchiumi T, Honnma K, Fujita K, Iwata H, Saeki Y, Hara Y, Ikeda S, Eda S, Mitsui H, Minamisawa K., ISME J 3(3), 2009
PMID: 18971963
Regulatory and DNA repair genes contribute to the desiccation resistance of Sinorhizobium meliloti Rm1021.
Humann JL, Ziemkiewicz HT, Yurgel SN, Kahn ML., Appl Environ Microbiol 75(2), 2009
PMID: 19028909
A portal for rhizobial genomes: RhizoGATE integrates a Sinorhizobium meliloti genome annotation update with postgenome data.
Becker A, Barnett MJ, Capela D, Dondrup M, Kamp PB, Krol E, Linke B, Rüberg S, Runte K, Schroeder BK, Weidner S, Yurgel SN, Batut J, Long SR, Pühler A, Goesmann A., J Biotechnol 140(1-2), 2009
PMID: 19103235
SMb20651 is another acyl carrier protein from Sinorhizobium meliloti.
Ramos-Vega AL, Dávila-Martínez Y, Sohlenkamp C, Contreras-Martínez S, Encarnación S, Geiger O, López-Lara IM., Microbiology 155(pt 1), 2009
PMID: 19118366
Effects of indole-3-acetic acid on Sinorhizobium meliloti survival and on symbiotic nitrogen fixation and stem dry weight production.
Imperlini E, Bianco C, Lonardo E, Camerini S, Cermola M, Moschetti G, Defez R., Appl Microbiol Biotechnol 83(4), 2009
PMID: 19343341
Transcriptomic analysis of Rhizobium leguminosarum biovar viciae in symbiosis with host plants Pisum sativum and Vicia cracca.
Karunakaran R, Ramachandran VK, Seaman JC, East AK, Mouhsine B, Mauchline TH, Prell J, Skeffington A, Poole PS., J Bacteriol 191(12), 2009
PMID: 19376875
Role of quorum sensing in Sinorhizobium meliloti-Alfalfa symbiosis.
Gurich N, González JE., J Bacteriol 191(13), 2009
PMID: 19395488
Nitrogen use efficiency. 3. Nitrogen fixation: genes and costs
Andrews M, Lea PJ, Raven JA, Azevedo RA., Ann Appl Biol 155(1), 2009
PMID: IND44231635
Molecular determinants of a symbiotic chronic infection.
Gibson KE, Kobayashi H, Walker GC., Annu Rev Genet 42(), 2008
PMID: 18983260
Identification of genes relevant to symbiosis and competitiveness in Sinorhizobium meliloti using signature-tagged mutants.
Pobigaylo N, Szymczak S, Nattkemper TW, Becker A., Mol Plant Microbe Interact 21(2), 2008
PMID: 18184066
A gene expression atlas of the model legume Medicago truncatula.
Benedito VA, Torres-Jerez I, Murray JD, Andriankaja A, Allen S, Kakar K, Wandrey M, Verdier J, Zuber H, Ott T, Moreau S, Niebel A, Frickey T, Weiller G, He J, Dai X, Zhao PX, Tang Y, Udvardi MK., Plant J 55(3), 2008
PMID: 18410479
Comparative genomic hybridisation and ultrafast pyrosequencing revealed remarkable differences between the Sinorhizobium meliloti genomes of the model strain Rm1021 and the field isolate SM11.
Stiens M, Becker A, Bekel T, Gödde V, Goesmann A, Niehaus K, Schneiker-Bekel S, Selbitschka W, Weidner S, Schlüter A, Pühler A., J Biotechnol 136(1-2), 2008
PMID: 18562031
A Sinorhizobium meliloti osmosensory two-component system required for cyclic glucan export and symbiosis.
Griffitts JS, Carlyon RE, Erickson JH, Moulton JL, Barnett MJ, Toman CJ, Long SR., Mol Microbiol 69(2), 2008
PMID: 18630344
Comprehensive assessment of the regulons controlled by the FixLJ-FixK2-FixK1 cascade in Bradyrhizobium japonicum.
Mesa S, Hauser F, Friberg M, Malaguti E, Fischer HM, Hennecke H., J Bacteriol 190(20), 2008
PMID: 18689489
Auxotrophy accounts for nodulation defect of most Sinorhizobium meliloti mutants in the branched-chain amino acid biosynthesis pathway.
de las Nieves Peltzer M, Roques N, Poinsot V, Aguilar OM, Batut J, Capela D., Mol Plant Microbe Interact 21(9), 2008
PMID: 18700827
What gets turned on in the rhizosphere?
Van Dillewijn P., Microb Biotechnol 1(5), 2008
PMID: 21261853
Construction and expression of sugar kinase transcriptional gene fusions by using the Sinorhizobium meliloti ORFeome.
Humann JL, Schroeder BK, Mortimer MW, House BL, Yurgel SN, Maloney SC, Ward KL, Fallquist HM, Ziemkiewicz HT, Kahn ML., Appl Environ Microbiol 74(21), 2008
PMID: 18791020
EFD Is an ERF transcription factor involved in the control of nodule number and differentiation in Medicago truncatula.
Vernié T, Moreau S, de Billy F, Plet J, Combier JP, Rogers C, Oldroyd G, Frugier F, Niebel A, Gamas P., Plant Cell 20(10), 2008
PMID: 18978033
Effector-stimulated single molecule protein-DNA interactions of a quorum-sensing system in Sinorhizobium meliloti.
Bartels FW, McIntosh M, Fuhrmann A, Metzendorf C, Plattner P, Sewald N, Anselmetti D, Ros R, Becker A., Biophys J 92(12), 2007
PMID: 17384071
The response of carbon metabolism and antioxidant defenses of alfalfa nodules to drought stress and to the subsequent recovery of plants.
Naya L, Ladrera R, Ramos J, González EM, Arrese-Igor C, Minchin FR, Becana M., Plant Physiol 144(2), 2007
PMID: 17468213
Genomes of the symbiotic nitrogen-fixing bacteria of legumes.
MacLean AM, Finan TM, Sadowsky MJ., Plant Physiol 144(2), 2007
PMID: 17556525
Dissection of the Bradyrhizobium japonicum NifA+sigma54 regulon, and identification of a ferredoxin gene (fdxN) for symbiotic nitrogen fixation.
Hauser F, Pessi G, Friberg M, Weber C, Rusca N, Lindemann A, Fischer HM, Hennecke H., Mol Genet Genomics 278(3), 2007
PMID: 17569992
Rhizobial factors required for stem nodule maturation and maintenance in Sesbania rostrata-Azorhizobium caulinodans ORS571 symbiosis.
Suzuki S, Aono T, Lee KB, Suzuki T, Liu CT, Miwa H, Wakao S, Iki T, Oyaizu H., Appl Environ Microbiol 73(20), 2007
PMID: 17720818
An oligonucleotide microarray resource for transcriptional profiling of Bradyrhizobium japonicum.
Chang WS, Franck WL, Cytryn E, Jeong S, Joshi T, Emerich DW, Sadowsky MJ, Xu D, Stacey G., Mol Plant Microbe Interact 20(10), 2007
PMID: 17918631
Identification of differentially expressed small non-coding RNAs in the legume endosymbiont Sinorhizobium meliloti by comparative genomics.
del Val C, Rivas E, Torres-Quesada O, Toro N, Jiménez-Zurdo JI., Mol Microbiol 66(5), 2007
PMID: 17971083
Genome-wide transcript analysis of Bradyrhizobium japonicum bacteroids in soybean root nodules.
Pessi G, Ahrens CH, Rehrauer H, Lindemann A, Hauser F, Fischer HM, Hennecke H., Mol Plant Microbe Interact 20(11), 2007
PMID: 17977147
Design and validation of a partial-genome microarray for transcriptional profiling of the Bradyrhizobium japonicum symbiotic gene region.
Hauser F, Lindemann A, Vuilleumier S, Patrignani A, Schlapbach R, Fischer HM, Hennecke H., Mol Genet Genomics 275(1), 2006
PMID: 16328374
Genetics and functional genomics of legume nodulation.
Stacey G, Libault M, Brechenmacher L, Wan J, May GD., Curr Opin Plant Biol 9(2), 2006
PMID: 16458572
Metabolic changes of rhizobia in legume nodules.
Prell J, Poole P., Trends Microbiol 14(4), 2006
PMID: 16520035
Sinorhizobium meliloti differentiation during symbiosis with alfalfa: a transcriptomic dissection.
Capela D, Filipe C, Bobik C, Batut J, Bruand C., Mol Plant Microbe Interact 19(4), 2006
PMID: 16610739
Construction of a large signature-tagged mini-Tn5 transposon library and its application to mutagenesis of Sinorhizobium meliloti.
Pobigaylo N, Wetter D, Szymczak S, Schiller U, Kurtz S, Meyer F, Nattkemper TW, Becker A., Appl Environ Microbiol 72(6), 2006
PMID: 16751548
The ntrPR operon of Sinorhizobium meliloti is organized and functions as a toxin-antitoxin module.
Bodogai M, Ferenczi S, Bashtovyy D, Miclea P, Papp P, Dusha I., Mol Plant Microbe Interact 19(7), 2006
PMID: 16838793
Transcriptome profiling reveals the importance of plasmid pSymB for osmoadaptation of Sinorhizobium meliloti.
Domínguez-Ferreras A, Pérez-Arnedo R, Becker A, Olivares J, Soto MJ, Sanjuán J., J Bacteriol 188(21), 2006
PMID: 16916894
Metabolite profiles of nodulated alfalfa plants indicate that distinct stages of nodule organogenesis are accompanied by global physiological adaptations.
Barsch A, Tellström V, Patschkowski T, Küster H, Niehaus K., Mol Plant Microbe Interact 19(9), 2006
PMID: 16941904
An integrated approach to functional genomics: construction of a novel reporter gene fusion library for Sinorhizobium meliloti.
Cowie A, Cheng J, Sibley CD, Fong Y, Zaheer R, Patten CL, Morton RM, Golding GB, Finan TM., Appl Environ Microbiol 72(11), 2006
PMID: 16963549
Mapping the Sinorhizobium meliloti 1021 solute-binding protein-dependent transportome.
Mauchline TH, Fowler JE, East AK, Sartor AL, Zaheer R, Hosie AH, Poole PS, Finan TM., Proc Natl Acad Sci U S A 103(47), 2006
PMID: 17101990
Peace talks and trade deals. Keys to long-term harmony in legume-microbe symbioses.
Oldroyd GE, Harrison MJ, Udvardi M., Plant Physiol 137(4), 2005
PMID: 15824283
The sulfate transporter SST1 is crucial for symbiotic nitrogen fixation in Lotus japonicus root nodules.
Krusell L, Krause K, Ott T, Desbrosses G, Krämer U, Sato S, Nakamura Y, Tabata S, James EK, Sandal N, Stougaard J, Kawaguchi M, Miyamoto A, Suganuma N, Udvardi MK., Plant Cell 17(5), 2005
PMID: 15805486
Transcriptome-based identification of the Sinorhizobium meliloti NodD1 regulon.
Capela D, Carrere S, Batut J., Appl Environ Microbiol 71(8), 2005
PMID: 16085895
Phosphorus-free membrane lipids of Sinorhizobium meliloti are not required for the symbiosis with alfalfa but contribute to increased cell yields under phosphorus-limiting conditions of growth.
López-Lara IM, Gao JL, Soto MJ, Solares-Pérez A, Weissenmayer B, Sohlenkamp C, Verroios GP, Thomas-Oates J, Geiger O., Mol Plant Microbe Interact 18(9), 2005
PMID: 16167767
Role of the regulatory gene rirA in the transcriptional response of Sinorhizobium meliloti to iron limitation.
Chao TC, Buhrmester J, Hansmeier N, Pühler A, Weidner S., Appl Environ Microbiol 71(10), 2005
PMID: 16204511
Transcriptome profiling of bacterial responses to root exudates identifies genes involved in microbe-plant interactions.
Mark GL, Dow JM, Kiely PD, Higgins H, Haynes J, Baysse C, Abbas A, Foley T, Franks A, Morrissey J, O'Gara F., Proc Natl Acad Sci U S A 102(48), 2005
PMID: 16301542
What can bacterial genome research teach us about bacteria-plant interactions?
Pühler A, Arlat M, Becker A, Göttfert M, Morrissey JP, O'Gara F., Curr Opin Plant Biol 7(2), 2004
PMID: 15003213
Wide-range transcriptional modulating effect of ntrR under microaerobiosis in Sinorhizobium meliloti.
Puskás LG, Nagy ZB, Kelemen JZ, Rüberg S, Bodogai M, Becker A, Dusha I., Mol Genet Genomics 272(3), 2004
PMID: 15365818
Rhizobium leguminosarum methyl-accepting chemotaxis protein genes are down-regulated in the pea nodule.
Yost CK, Del Bel KL, Quandt J, Hynes MF., Arch Microbiol 182(6), 2004
PMID: 15502966
Nitrogen regulation in Sinorhizobium meliloti probed with whole genome arrays.
Davalos M, Fourment J, Lucas A, Bergès H, Kahn D., FEMS Microbiol Lett 241(1), 2004
PMID: 15556707

47 References

Daten bereitgestellt von Europe PubMed Central.

Genes and signals in the rhizobium-legume symbiosis.
Long SR., Plant Physiol. 125(1), 2001
PMID: 11154299
The composite genome of the legume symbiont Sinorhizobium meliloti.
Galibert F, Finan TM, Long SR, Puhler A, Abola P, Ampe F, Barloy-Hubler F, Barnett MJ, Becker A, Boistard P, Bothe G, Boutry M, Bowser L, Buhrmester J, Cadieu E, Capela D, Chain P, Cowie A, Davis RW, Dreano S, Federspiel NA, Fisher RF, Gloux S, Godrie T, Goffeau A, Golding B, Gouzy J, Gurjal M, Hernandez-Lucas I, Hong A, Huizar L, Hyman RW, Jones T, Kahn D, Kahn ML, Kalman S, Keating DH, Kiss E, Komp C, Lelaure V, Masuy D, Palm C, Peck MC, Pohl TM, Portetelle D, Purnelle B, Ramsperger U, Surzycki R, Thebault P, Vandenbol M, Vorholter FJ, Weidner S, Wells DH, Wong K, Yeh KC, Batut J., Science 293(5530), 2001
PMID: 11474104
A Sinorhizobium meliloti Lipopolysaccharide Mutant Induces Effective Nodules on the Host Plant Medicago sativa (Alfalfa) but Fails to Establish a Symbiosis with Medicago truncatula
Niehaus, Molecular Plant-Microbe Interactions 11(9), 1998
A global analysis of protein expression profiles in Sinorhizobium meliloti: discovery of new genes for nodule occupancy and stress adaptation.
Djordjevic MA, Chen HC, Natera S, Van Noorden G, Menzel C, Taylor S, Renard C, Geiger O, Weiller GF; Sinorhizobium DNA Sequencing Consortium., Mol. Plant Microbe Interact. 16(6), 2003
PMID: 12795377
Bacteroid formation in the Rhizobium-legume symbiosis.
Oke V, Long SR., Curr. Opin. Microbiol. 2(6), 1999
PMID: 10607628
Critical protective role of bacterial superoxide dismutase in rhizobium-legume symbiosis.
Santos R, Herouart D, Puppo A, Touati D., Mol. Microbiol. 38(4), 2000
PMID: 11115110
The complete sequence of the 1,683-kb pSymB megaplasmid from the N2-fixing endosymbiont Sinorhizobium meliloti.
Finan TM, Weidner S, Wong K, Buhrmester J, Chain P, Vorholter FJ, Hernandez-Lucas I, Becker A, Cowie A, Gouzy J, Golding B, Puhler A., Proc. Natl. Acad. Sci. U.S.A. 98(17), 2001
PMID: 11481431
Analysis of the chromosome sequence of the legume symbiont Sinorhizobium meliloti strain 1021.
Capela D, Barloy-Hubler F, Gouzy J, Bothe G, Ampe F, Batut J, Boistard P, Becker A, Boutry M, Cadieu E, Dreano S, Gloux S, Godrie T, Goffeau A, Kahn D, Kiss E, Lelaure V, Masuy D, Pohl T, Portetelle D, Puhler A, Purnelle B, Ramsperger U, Renard C, Thebault P, Vandenbol M, Weidner S, Galibert F., Proc. Natl. Acad. Sci. U.S.A. 98(17), 2001
PMID: 11481430
Chronic intracellular infection of alfalfa nodules by Sinorhizobium meliloti requires correct lipopolysaccharide core.
Campbell GR, Reuhs BL, Walker GC., Proc. Natl. Acad. Sci. U.S.A. 99(6), 2002
PMID: 11904442
A homolog of the CtrA cell cycle regulator is present and essential in Sinorhizobium meliloti.
Barnett MJ, Hung DY, Reisenauer A, Shapiro L, Long SR., J. Bacteriol. 183(10), 2001
PMID: 11325950
Alfalfa root nodule invasion efficiency is dependent on Sinorhizobium meliloti polysaccharides.
Pellock BJ, Cheng HP, Walker GC., J. Bacteriol. 182(15), 2000
PMID: 10894742
Genetic organization of the region encoding regulation, biosynthesis, and transport of rhizobactin 1021, a siderophore produced by Sinorhizobium meliloti.
Lynch D, O'Brien J, Welch T, Clarke P, Cuiv PO, Crosa JH, O'Connell M., J. Bacteriol. 183(8), 2001
PMID: 11274118
Impact of genomic technologies on studies of bacterial gene expression.
Rhodius V, Van Dyk TK, Gross C, LaRossa RA., Annu. Rev. Microbiol. 56(), 2002
PMID: 12142487
Development of Sinorhizobium meliloti pilot macroarrays for transcriptome analysis.
Berges H, Lauber E, Liebe C, Batut J, Kahn D, de Bruijn FJ, Ampe F., Appl. Environ. Microbiol. 69(2), 2003
PMID: 12571049
High-resolution transcriptional analysis of the symbiotic plasmid of Rhizobium sp. NGR234.
Perret X, Freiberg C, Rosenthal A, Broughton WJ, Fellay R., Mol. Microbiol. 32(2), 1999
PMID: 10231496
Symbiotic induction of pyruvate dehydrogenase genes from Sinorhizobium meliloti.
Cabanes D, Boistard P, Batut J., Mol. Plant Microbe Interact. 13(5), 2000
PMID: 10796014
Proteome analysis of differentially displayed proteins as a tool for the investigation of symbiosis.
Natera SH, Guerreiro N, Djordjevic MA., Mol. Plant Microbe Interact. 13(9), 2000
PMID: 10975656
Expression of the bacterial catalase genes during Sinorhizobium meliloti-Medicago sativa symbiosis and their crucial role during the infection process.
Jamet A, Sigaud S, Van de Sype G, Puppo A, Herouart D., Mol. Plant Microbe Interact. 16(3), 2003
PMID: 12650453
A new family of high-affinity ABC manganese and zinc permeases.
Claverys JP., Res. Microbiol. 152(3-4), 2001
PMID: 11421271
Mapping of 41 chemotaxis, flagellar and motility genes to a single region of the Sinorhizobium meliloti chromosome.
Sourjik V, Sterr W, Platzer J, Bos I, Haslbeck M, Schmitt R., Gene 223(1-2), 1998
PMID: 9858749
Genomics, gene expression and DNA arrays.
Lockhart DJ, Winzeler EA., Nature 405(6788), 2000
PMID: 10866209
Nucleotide sequence and predicted functions of the entire Sinorhizobium meliloti pSymA megaplasmid.
Barnett MJ, Fisher RF, Jones T, Komp C, Abola AP, Barloy-Hubler F, Bowser L, Capela D, Galibert F, Gouzy J, Gurjal M, Hong A, Huizar L, Hyman RW, Kahn D, Kahn ML, Kalman S, Keating DH, Palm C, Peck MC, Surzycki R, Wells DH, Yeh KC, Davis RW, Federspiel NA, Long SR., Proc. Natl. Acad. Sci. U.S.A. 98(17), 2001
PMID: 11481432
Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation.
Yang YH, Dudoit S, Luu P, Lin DM, Peng V, Ngai J, Speed TP., Nucleic Acids Res. 30(4), 2002
PMID: 11842121
Exploring the metabolic and genetic control of gene expression on a genomic scale.
DeRisi JL, Iyer VR, Brown PO., Science 278(5338), 1997
PMID: 9381177
Amino-acid cycling drives nitrogen fixation in the legume-Rhizobium symbiosis.
Lodwig EM, Hosie AH, Bourdes A, Findlay K, Allaway D, Karunakaran R, Downie JA, Poole PS., Nature 422(6933), 2003
PMID: 12700763
Transcriptome analysis of Sinorhizobium meliloti during symbiosis.
Ampe F, Kiss E, Sabourdy F, Batut J., Genome Biol. 4(2), 2003
PMID: 12620125
Differentiation of nodules of Glycine max
Werner, Planta 141(2), 1978
Mutations in sit B and sit D genes affect manganese-growth requirements in Sinorhizobium meliloti.
Platero RA, Jaureguy M, Battistoni FJ, Fabiano ER., FEMS Microbiol. Lett. 218(1), 2003
PMID: 12583899
Identification of a locus involved in the utilization of iron by Actinobacillus pleuropneumoniae.
Chin N, Frey J, Chang CF, Chang YF., FEMS Microbiol. Lett. 143(1), 1996
PMID: 8807793
A novel eubacterial phylum: comparative nucleotide sequence analysis of a tuf-gene of Flexistipes sinusarabici
Ludwig, FEMS Microbiology Letters 78(2-3), 1991
Genetic mapping of Rhizobium meliloti.
Meade HM, Signer ER., Proc. Natl. Acad. Sci. U.S.A. 74(5), 1977
PMID: 266730
Oxygen as a key developmental regulator of Rhizobium meliloti N2-fixation gene expression within the alfalfa root nodule.
Soupene E, Foussard M, Boistard P, Truchet G, Batut J., Proc. Natl. Acad. Sci. U.S.A. 92(9), 1995
PMID: 7731979
Metabolism of Rhizobium Bacteroids
Lodwig, Critical Reviews in Plant Sciences 22(1), 2003

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

PMID: 15000396
PubMed | Europe PMC

Suchen in

Google Scholar