Freezing solutions of equivariant evolution equations

Beyn W-J, Thümmler V (2004)
SIAM Journal on Applied Dynamical Systems 3(2): 85-116.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Autor/in
;
Abstract / Bemerkung
In this paper we develop numerical methods for integrating general evolution equations u(t) = F(u), u(0) = u(0), where F is defined on a dense subspace of some Banach space (generally infinite-dimensional) and is equivariant with respect to the action of a finite-dimensional (not necessarily compact) Lie group. Such equations typically arise from autonomous PDEs on unbounded domains that are invariant under the action of the Euclidean group or one of its subgroups. In our approach we write the solution u(t) as a composition of the action of a time-dependent group element with a "frozen solution" in the given Banach space. We keep the frozen solution as constant as possible by introducing a set of algebraic constraints (phase conditions), the number of which is given by the dimension of the Lie group. The resulting PDAE (partial differential algebraic equation) is then solved by combining classical numerical methods, such as restriction to a bounded domain with asymptotic boundary conditions, half-explicit Euler methods in time, and finite differences in space. We provide applications to reaction-diffusion systems that have traveling wave or spiral solutions in one and two space dimensions.
Stichworte
equivariance; general evolution equations; Lie groups; partial; differential algebraic equations; unbounded domains; boundary conditions; asymptotic
Erscheinungsjahr
2004
Zeitschriftentitel
SIAM Journal on Applied Dynamical Systems
Band
3
Ausgabe
2
Seite(n)
85-116
ISSN
1536-0040
Page URI
https://pub.uni-bielefeld.de/record/1607379

Zitieren

Beyn W-J, Thümmler V. Freezing solutions of equivariant evolution equations. SIAM Journal on Applied Dynamical Systems. 2004;3(2):85-116.
Beyn, W. - J., & Thümmler, V. (2004). Freezing solutions of equivariant evolution equations. SIAM Journal on Applied Dynamical Systems, 3(2), 85-116. doi:10.1137/030600515
Beyn, W. - J., and Thümmler, V. (2004). Freezing solutions of equivariant evolution equations. SIAM Journal on Applied Dynamical Systems 3, 85-116.
Beyn, W.-J., & Thümmler, V., 2004. Freezing solutions of equivariant evolution equations. SIAM Journal on Applied Dynamical Systems, 3(2), p 85-116.
W.-J. Beyn and V. Thümmler, “Freezing solutions of equivariant evolution equations”, SIAM Journal on Applied Dynamical Systems, vol. 3, 2004, pp. 85-116.
Beyn, W.-J., Thümmler, V.: Freezing solutions of equivariant evolution equations. SIAM Journal on Applied Dynamical Systems. 3, 85-116 (2004).
Beyn, Wolf-Jürgen, and Thümmler, Vera. “Freezing solutions of equivariant evolution equations”. SIAM Journal on Applied Dynamical Systems 3.2 (2004): 85-116.