Subcellular distribution of the V-ATPase complex in plant cells, and in vivo localisation of the 100 kDa subunit VHA-a within the complex

Kluge C, Seidel T, Bolte S, Sharma SS, Hanitzsch M, Satiat-Jeunemaitre B, Ross J, Sauer M, Golldack D, Dietz K-J (2004)
BMC Cell Biology 5(1): 29.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA
Autor*in
Kluge, C; Seidel, ThorstenUniBi; Bolte, S; Sharma, S. S.; Hanitzsch, M; Satiat-Jeunemaitre, B; Ross, J; Sauer, MarkusUniBi; Golldack, DortjeUniBi; Dietz, Karl-JosefUniBi
Abstract / Bemerkung
Background: Vacuolar H+-ATPases are large protein complexes of more than 700 kDa that acidify endomembrane compartments and are part of the secretory system of eukaryotic cells. They are built from 14 different ( VHA)-subunits. The paper addresses the question of sub-cellular localisation and subunit composition of plant V-ATPase in vivo and in vitro mainly by using colocalization and fluorescence resonance energy transfer techniques ( FRET). Focus is placed on the examination and function of the 95 kDa membrane spanning subunit VHA-a. Showing similarities to the already described Vph1 and Stv1 vacuolar ATPase subunits from yeast, VHA-a revealed a bipartite structure with (i) a less conserved cytoplasmically orientated N-terminus and (ii) a membrane-spanning C-terminus with a higher extent of conservation including all amino acids shown to be essential for proton translocation in the yeast. On the basis of sequence data VHA-a appears to be an essential structural and functional element of V-ATPase, although previously a sole function in assembly has been proposed. Results: To elucidate the presence and function of VHA-a in the plant complex, three approaches were undertaken: ( i) co-immunoprecipitation with antibodies directed to epitopes in the N- and C-terminal part of VHA-a, respectively, ( ii) immunocytochemistry approach including co-localisation studies with known plant endomembrane markers, and (iii) in vivo-FRET between subunits fused to variants of green fluorescence protein (CFP, YFP) in transfected cells. Conclusions: All three sets of results show that V-ATPase contains VHA-a protein that interacts in a specific manner with other subunits. The genomes of plants encode three genes of the 95 kDa subunit ( VHA-a) of the vacuolar type H+-ATPase. Immuno-localisation of VHA-a shows that the recognized subunit is exclusively located on the endoplasmic reticulum. This result is in agreement with the hypothesis that the different isoforms of VHA-a may localize on distinct endomembrane compartments, as it was shown for its yeast counterpart Vph1.
Erscheinungsjahr
2004
Zeitschriftentitel
BMC Cell Biology
Band
5
Ausgabe
1
Seite(n)
29
ISSN
1471-2121
Page URI
https://pub.uni-bielefeld.de/record/1606782

Zitieren

Kluge C, Seidel T, Bolte S, et al. Subcellular distribution of the V-ATPase complex in plant cells, and in vivo localisation of the 100 kDa subunit VHA-a within the complex. BMC Cell Biology. 2004;5(1):29.
Kluge, C., Seidel, T., Bolte, S., Sharma, S. S., Hanitzsch, M., Satiat-Jeunemaitre, B., Ross, J., et al. (2004). Subcellular distribution of the V-ATPase complex in plant cells, and in vivo localisation of the 100 kDa subunit VHA-a within the complex. BMC Cell Biology, 5(1), 29. https://doi.org/10.1186/1471-2121-5-29
Kluge, C, Seidel, Thorsten, Bolte, S, Sharma, S. S., Hanitzsch, M, Satiat-Jeunemaitre, B, Ross, J, Sauer, Markus, Golldack, Dortje, and Dietz, Karl-Josef. 2004. “Subcellular distribution of the V-ATPase complex in plant cells, and in vivo localisation of the 100 kDa subunit VHA-a within the complex”. BMC Cell Biology 5 (1): 29.
Kluge, C., Seidel, T., Bolte, S., Sharma, S. S., Hanitzsch, M., Satiat-Jeunemaitre, B., Ross, J., Sauer, M., Golldack, D., and Dietz, K. - J. (2004). Subcellular distribution of the V-ATPase complex in plant cells, and in vivo localisation of the 100 kDa subunit VHA-a within the complex. BMC Cell Biology 5, 29.
Kluge, C., et al., 2004. Subcellular distribution of the V-ATPase complex in plant cells, and in vivo localisation of the 100 kDa subunit VHA-a within the complex. BMC Cell Biology, 5(1), p 29.
C. Kluge, et al., “Subcellular distribution of the V-ATPase complex in plant cells, and in vivo localisation of the 100 kDa subunit VHA-a within the complex”, BMC Cell Biology, vol. 5, 2004, pp. 29.
Kluge, C., Seidel, T., Bolte, S., Sharma, S.S., Hanitzsch, M., Satiat-Jeunemaitre, B., Ross, J., Sauer, M., Golldack, D., Dietz, K.-J.: Subcellular distribution of the V-ATPase complex in plant cells, and in vivo localisation of the 100 kDa subunit VHA-a within the complex. BMC Cell Biology. 5, 29 (2004).
Kluge, C, Seidel, Thorsten, Bolte, S, Sharma, S. S., Hanitzsch, M, Satiat-Jeunemaitre, B, Ross, J, Sauer, Markus, Golldack, Dortje, and Dietz, Karl-Josef. “Subcellular distribution of the V-ATPase complex in plant cells, and in vivo localisation of the 100 kDa subunit VHA-a within the complex”. BMC Cell Biology 5.1 (2004): 29.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T08:48:03Z
MD5 Prüfsumme
4fc89f5b3a4846437184d5366f63b9ab


21 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Arabidopsis tonoplast intrinsic protein and vacuolar H+-adenosinetriphosphatase reflect vacuole dynamics during development of syncytia induced by the beet cyst nematode Heterodera schachtii.
Baranowski Ł, Różańska E, Sańko-Sawczenko I, Matuszkiewicz M, Znojek E, Filipecki M, Grundler FMW, Sobczak M., Protoplasma 256(2), 2019
PMID: 30187342
Vacuolar ATPase in phagosome-lysosome fusion.
Kissing S, Hermsen C, Repnik U, Nesset CK, von Bargen K, Griffiths G, Ichihara A, Lee BS, Schwake M, De Brabander J, Haas A, Saftig P., J Biol Chem 290(22), 2015
PMID: 25903133
Studies on vacuolar membrane microdomains isolated from Arabidopsis suspension-cultured cells: local distribution of vacuolar membrane proteins.
Yoshida K, Ohnishi M, Fukao Y, Okazaki Y, Fujiwara M, Song C, Nakanishi Y, Saito K, Shimmen T, Suzaki T, Hayashi F, Fukaki H, Maeshima M, Mimura T., Plant Cell Physiol 54(10), 2013
PMID: 23903016
Quantification of Förster resonance energy transfer by monitoring sensitized emission in living plant cells.
Müller SM, Galliardt H, Schneider J, Barisas BG, Seidel T., Front Plant Sci 4(), 2013
PMID: 24194740
Alterations in detergent-resistant plasma membrane microdomains in Arabidopsis thaliana during cold acclimation.
Minami A, Fujiwara M, Furuto A, Fukao Y, Yamashita T, Kamo M, Kawamura Y, Uemura M., Plant Cell Physiol 50(2), 2009
PMID: 19106119
The SNF1-type serine-threonine protein kinase SAPK4 regulates stress-responsive gene expression in rice.
Diédhiou CJ, Popova OV, Dietz KJ, Golldack D., BMC Plant Biol 8(), 2008
PMID: 18442365
Organelle-specific isoenzymes of plant V-ATPase as revealed by in vivo-FRET analysis.
Seidel T, Schnitzer D, Golldack D, Sauer M, Dietz KJ., BMC Cell Biol 9(), 2008
PMID: 18507826
The oligomeric stromal proteome of Arabidopsis thaliana chloroplasts.
Peltier JB, Cai Y, Sun Q, Zabrouskov V, Giacomelli L, Rudella A, Ytterberg AJ, Rutschow H, van Wijk KJ., Mol Cell Proteomics 5(1), 2006
PMID: 16207701
Quantitative fluorescence microscopy: from art to science.
Fricker M, Runions J, Moore I., Annu Rev Plant Biol 57(), 2006
PMID: 16669756
Vacuolar H+-ATPase activity is required for endocytic and secretory trafficking in Arabidopsis.
Dettmer J, Hong-Hermesdorf A, Stierhof YD, Schumacher K., Plant Cell 18(3), 2006
PMID: 16461582
Show and tell: cell biology of pathogen invasion.
Koh S, Somerville S., Curr Opin Plant Biol 9(4), 2006
PMID: 16714141
Members of the Arabidopsis AtTPK/KCO family form homomeric vacuolar channels in planta.
Voelker C, Schmidt D, Mueller-Roeber B, Czempinski K., Plant J 48(2), 2006
PMID: 16984403
Endomembrane proton pumps: connecting membrane and vesicle transport.
Schumacher K., Curr Opin Plant Biol 9(6), 2006
PMID: 17008121
ZMVHA-B1, the gene for subunit B of vacuolar H+-ATPase from the eelgrass Zostera marina L. Is able to replace vma2 in a yeast null mutant.
Alemzadeh A, Fujie M, Usami S, Yoshizaki T, Oyama K, Kawabata T, Yamada T., J Biosci Bioeng 102(5), 2006
PMID: 17189165
A guided tour into subcellular colocalization analysis in light microscopy.
Bolte S, Cordelières FP., J Microsc 224(pt 3), 2006
PMID: 17210054
The plant Golgi apparatus--going with the flow.
Hawes C, Satiat-Jeunemaitre B., Biochim Biophys Acta 1744(2), 2005
PMID: 15922463
Mapping of C-termini of V-ATPase subunits by in vivo-FRET measurements.
Seidel T, Golldack D, Dietz KJ., FEBS Lett 579(20), 2005
PMID: 16061227

52 References

Daten bereitgestellt von Europe PubMed Central.

Membranes markers in highly purified clathrin-coated vesicles from hypocotyls
Depta H, Holstein SEH, Robinson DG, Lutzelschwab M, Michalke W., 1991
Immunological detection of tonoplast polypeptides in the plasma membrane of pea cotyledons
Robinson DG, Haschke HP, Hinz G, Hoh B, Maeshima M, Marty F., 1996
Localization of pyrophosphatase and V-ATPase in
Robinson DG, Hoppenrath M, Oberbeck K, Luykx P, Ratajczak R., 1996
Subunit structure, function, and arrangement in the yeast and coated vesicle V-ATPases.
Inoue T, Wilkens S, Forgac M., J. Bioenerg. Biomembr. 35(4), 2003
PMID: 14635775
A simple nomenclature for a complex proton pump: VHA genes encode the vacuolar H(+)-ATPase.
Sze H, Schumacher K, Muller ML, Padmanaban S, Taiz L., Trends Plant Sci. 7(4), 2002
PMID: 11950611
Significance of the V-type ATPase for the adaptation to stressful growth conditions and its regulation on the molecular and biochemical level.
Dietz KJ, Tavakoli N, Kluge C, Mimura T, Sharma SS, Harris GC, Chardonnens AN, Golldack D., J. Exp. Bot. 52(363), 2001
PMID: 11559732
New insight into the structure and regulation of the plant vacuolar H+-ATPase.
Kluge C, Lahr J, Hanitzsch M, Bolte S, Golldack D, Dietz KJ., J. Bioenerg. Biomembr. 35(4), 2003
PMID: 14635783
Structure, function and regulation of the plant vacuolar H(+)-translocating ATPase.
Ratajczak R., Biochim. Biophys. Acta 1465(1-2), 2000
PMID: 10748245
Analysis of the genome sequence of the flowering plant Arabidopsis thaliana.
Arabidopsis Genome Initiative., Nature 408(6814), 2000
PMID: 11130711
cDNA cloning of 12 subunits of the V-type ATPase from Mesembryanthemum crystallinum and their expression under stress.
Kluge C, Lamkemeyer P, Tavakoli N, Golldack D, Kandlbinder A, Dietz KJ., Mol. Membr. Biol. 20(2), 2003
PMID: 12851073
Structure of the 116-kDa polypeptide of the clathrin-coated vesicle/synaptic vesicle proton pump.
Perin MS, Fried VA, Stone DK, Xie XS, Sudhof TC., J. Biol. Chem. 266(6), 1991
PMID: 1704894
The VPH1 gene encodes a 95-kDa integral membrane polypeptide required for in vivo assembly and activity of the yeast vacuolar H(+)-ATPase.
Manolson MF, Proteau D, Preston RA, Stenbit A, Roberts BT, Hoyt MA, Preuss D, Mulholland J, Botstein D, Jones EW., J. Biol. Chem. 267(20), 1992
PMID: 1385813
STV1 gene encodes functional homologue of 95-kDa yeast vacuolar H(+)-ATPase subunit Vph1p.
Manolson MF, Wu B, Proteau D, Taillon BE, Roberts BT, Hoyt MA, Jones EW., J. Biol. Chem. 269(19), 1994
PMID: 7514599
4-[1-(phenylsulfonyl)indol-3-yl]-3a,4,5,9b-tetrahydro-3H-cyclopenta[c] quinoline.
Sankaranarayanan R, Velmurugan D, Raj SS, Fun HK, Babu G, Perumal PT., Acta Crystallogr C 56 ( Pt 4)(), 2000
PMID: 10815216
Recombinant SFD isoforms activate vacuolar proton pumps.
Zhou Z, Peng SB, Crider BP, Andersen P, Xie XS, Stone DK., J. Biol. Chem. 274(22), 1999
PMID: 10336497
Site-directed mutagenesis of the 100-kDa subunit (Vph1p) of the yeast vacuolar (H+)-ATPase.
Leng XH, Manolson MF, Liu Q, Forgac M., J. Biol. Chem. 271(37), 1996
PMID: 8798414
Arg-735 of the 100-kDa subunit a of the yeast V-ATPase is essential for proton translocation.
Kawasaki-Nishi S, Nishi T, Forgac M., Proc. Natl. Acad. Sci. U.S.A. 98(22), 2001
PMID: 11592980
Purification and initial characterization of a potential plant vacuolar targeting receptor.
Kirsch T, Paris N, Butler JM, Beevers L, Rogers JC., Proc. Natl. Acad. Sci. U.S.A. 91(8), 1994
PMID: 8159760
Function of the COOH-terminal domain of Vph1p in activity and assembly of the yeast V-ATPase.
Leng XH, Manolson MF, Forgac M., J. Biol. Chem. 273(12), 1998
PMID: 9506970
Subunit E of the vacuolar H(+)-ATPase of Hordeum vulgare L.: cDNA cloning, expression and immunological analysis.
Dietz KJ, Rudloff S, Ageorges A, Eckerskorn C, Fischer K, Arbinger B., Plant J. 8(4), 1995
PMID: 7496398
Immunodetection of Rho-like plant proteins with Rac1 and Cdc42Hs antibodies
Couchy I, Minic Z, Laporte J, Brown S, Satiat-Jeunemaitre B., 1998
Tonoplast intrinsic protein isoforms as markers for vacuolar functions
Jauh GY, Phillips TE, Rogers JC., Plant Cell 11(10), 1999
PMID: 10521518
Fluorescence resonance energy transfer from cyan to yellow fluorescent protein detected by acceptor photobleaching using confocal microscopy and a single laser.
Karpova TS, Baumann CT, He L, Wu X, Grammer A, Lipsky P, Hager GL, McNally JG., J Microsc 209(Pt 1), 2003
PMID: 12535185
Proton conduction and bafilomycin binding by the V0 domain of the coated vesicle V-ATPase.
Zhang J, Feng Y, Forgac M., J. Biol. Chem. 269(38), 1994
PMID: 8089118
Bafilomycins and concanamycins as inhibitors of V-ATPases and P-ATPases.
Drose S, Altendorf K., J. Exp. Biol. 200(Pt 1), 1997
PMID: 9023991
Proteolysis and orientation on reconstitution of the coated vesicle proton pump.
Adachi I, Arai H, Pimental R, Forgac M., J. Biol. Chem. 265(2), 1990
PMID: 1967251
Vacuolar-Type H+ -ATPases Are Associated with the Endoplasmic Reticulum and Provacuoles of Root Tip Cells.
Herman EM, Li X, Su RT, Larsen P, Hsu H, Sze H., Plant Physiol. 106(4), 1994
PMID: 12232411
Localization of membrane pyrophosphatase activity in seedlings
Long AR, Williams LE, Nelson SJ, Hall Jl., 1995
V-Type ATPase and pyrophosphatase in endomembranes of maize roots
Oberbeck K, Drucker M, Robinson DG., 1994
Evidence for an ATP-Dependent Proton Pump on the Golgi of Corn Coleoptiles.
Chanson A, Taiz L., Plant Physiol. 78(2), 1985
PMID: 16664222
Separation of two types of electrogenic h-pumping ATPases from oat roots.
Churchill KA, Holaway B, Sze H., Plant Physiol. 73(4), 1983
PMID: 16663344
Vacuolar and plasma membrane proton-adenosinetriphosphatases.
Nelson N, Harvey WR., Physiol. Rev. 79(2), 1999
PMID: 10221984
Assembly and regulation of the yeast vacuolar H(+)-ATPase.
Kane PM, Parra KJ., J. Exp. Biol. 203(Pt 1), 2000
PMID: 10600676
Structure of bovine mitochondrial F(1)-ATPase inhibited by Mg(2+) ADP and aluminium fluoride.
Braig K, Menz RI, Montgomery MG, Leslie AG, Walker JE., Structure 8(6), 2000
PMID: 10873854
Three-dimensional map of a plant V-ATPase based on electron microscopy.
Domgall I, Venzke D, Luttge U, Ratajczak R, Bottcher B., J. Biol. Chem. 277(15), 2002
PMID: 11815621
Divergent light-, ascorbate-, and oxidative stress-dependent regulation of expression of the peroxiredoxin gene family in Arabidopsis.
Horling F, Lamkemeyer P, Konig J, Finkemeier I, Kandlbinder A, Baier M, Dietz KJ., Plant Physiol. 131(1), 2003
PMID: 12529539
Immunological characterization of two dominant tonoplast polypeptides.
Betz M, Dietz KJ., Plant Physiol. 97(4), 1991
PMID: 16668546
The vacuolar (H+)-ATPases--nature's most versatile proton pumps.
Nishi T, Forgac M., Nat. Rev. Mol. Cell Biol. 3(2), 2002
PMID: 11836511
Saturation of the endoplasmic reticulum retention machinery reveals anterograde bulk flow
Crofts AJ, Leborgne-Castel N, Hillmer S, Robinson DG, Phillipson B, Carlsson LE, Ashford DA, Denecke J., Plant Cell 11(11), 1999
PMID: 10559446
A monoclonal-antibody, JIM-84, recognizes the golgi-apparatus and plasmamembrane in plant cells
Horsley D, Coleman J, Evams D, Crooks K, Peart J, Satiat-Jeunemaitre B, Haws C., 1993
GFP-based FRET microscopy in living plant cells.
Gadella TW Jr, van der Krogt GN , Bisseling T., Trends Plant Sci. 4(7), 1999
PMID: 10407445
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 15310389
PubMed | Europe PMC

Suchen in

Google Scholar