Genotypic variation of the response to cadmium toxicity in Pisum sativum

Metwally A, Safronova VI, Belimov AA, Dietz K-J (2005)

Zeitschriftenaufsatz | Veröffentlicht | Englisch
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Metwally, A; Safronova, VI; Belimov, AA; Dietz, Karl-JosefUniBi
Abstract / Bemerkung
This work evaluates the (cor-)relations between selected biochemical responses to toxic Cd and the degree of Cd sensitivity in a set of pea genotypes. Ten genotypes were analysed that differ in their growth response to Cd when expressed as root or shoot tolerance indices (TIs). Concentrations of non-protein thiols (NPTs) and malondialdehyde (MDA), activity of chitinase, peroxidase (POX), and catalase significantly increased in all pea genotypes treated with Cd. Cd-sensitivity of genotypes was correlated with relative increases in MDA concentration as well as activities of chitinase and POX, suggesting similar Cd stress effects. Activities of ascorbate peroxidase (APX) decreased, but concentrations of glutathione (GSH) increased in the less Cd-sensitive genotypes. Differences in root and leaf contents of Cd revealed no correlation with TI, metabolic parameters, and enzyme activities in Cd-treated plants, respectively, except that shoot Cd concentration positively correlated with shoot chitinase activity. Toxic Cd levels inhibited uptake of nutrient elements such as P, K, S, Ca, Zn, Mn, and B by plants in an organ- and genotype-specific manner. Cd-sensitivity was significantly correlated with decreased root Zn concentrations. The results show both similarities, as well as distinct features, in Cd toxicity expression in genotypes of one species, suggesting that independent and multi-factorial reactions modulate Cd sensitivity on the low-tolerance level of plants. The study illustrates the biochemical basis of earlier detected genotypic variation in Cd response.
ascorbate peroxidase; catalase; glutathione; heavy metals; peroxidase; cadmium; Pisum sativum L.
Page URI


Metwally A, Safronova VI, Belimov AA, Dietz K-J. Genotypic variation of the response to cadmium toxicity in Pisum sativum. JOURNAL OF EXPERIMENTAL BOTANY. 2005;56(409):167-178.
Metwally, A., Safronova, V. I., Belimov, A. A., & Dietz, K. - J. (2005). Genotypic variation of the response to cadmium toxicity in Pisum sativum. JOURNAL OF EXPERIMENTAL BOTANY, 56(409), 167-178.
Metwally, A, Safronova, VI, Belimov, AA, and Dietz, Karl-Josef. 2005. “Genotypic variation of the response to cadmium toxicity in Pisum sativum”. JOURNAL OF EXPERIMENTAL BOTANY 56 (409): 167-178.
Metwally, A., Safronova, V. I., Belimov, A. A., and Dietz, K. - J. (2005). Genotypic variation of the response to cadmium toxicity in Pisum sativum. JOURNAL OF EXPERIMENTAL BOTANY 56, 167-178.
Metwally, A., et al., 2005. Genotypic variation of the response to cadmium toxicity in Pisum sativum. JOURNAL OF EXPERIMENTAL BOTANY, 56(409), p 167-178.
A. Metwally, et al., “Genotypic variation of the response to cadmium toxicity in Pisum sativum”, JOURNAL OF EXPERIMENTAL BOTANY, vol. 56, 2005, pp. 167-178.
Metwally, A., Safronova, V.I., Belimov, A.A., Dietz, K.-J.: Genotypic variation of the response to cadmium toxicity in Pisum sativum. JOURNAL OF EXPERIMENTAL BOTANY. 56, 167-178 (2005).
Metwally, A, Safronova, VI, Belimov, AA, and Dietz, Karl-Josef. “Genotypic variation of the response to cadmium toxicity in Pisum sativum”. JOURNAL OF EXPERIMENTAL BOTANY 56.409 (2005): 167-178.

93 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Differential physiological responses and tolerance to potentially toxic elements in biodiesel tree Jatropha curcas.
Yamada M, Malambane G, Yamada S, Suharsono S, Tsujimoto H, Moseki B, Akashi K., Sci Rep 8(1), 2018
PMID: 29374257
Physiological responses to cadmium stress in strawberry treated with pomegranate peel-activated carbon.
Naderi S, Gholami M, Baninasab B, Afyuni M., Int J Phytoremediation 20(6), 2018
PMID: 29688051
Elucidating the physiological and biochemical responses of different tobacco (Nicotiana tabacum) genotypes to lead toxicity.
Maodzeka A, Hussain N, Wei L, Zvobgo G, Mapodzeke JM, Adil MF, Jabeen S, Wang F, Jiang L, Shamsi IH., Environ Toxicol Chem 36(1), 2017
PMID: 27283783
Remediation of cadmium toxicity in field peas (Pisum sativum L.) through exogenous silicon.
Rahman MF, Ghosal A, Alam MF, Kabir AH., Ecotoxicol Environ Saf 135(), 2017
PMID: 27736676
Isolation and characterization of a novel cadmium-regulated Yellow Stripe-Like transporter (SnYSL3) in Solanum nigrum.
Feng S, Tan J, Zhang Y, Liang S, Xiang S, Wang H, Chai T., Plant Cell Rep 36(2), 2017
PMID: 27866260
Comparative of Quercus spp. and Salix spp. for phytoremediation of Pb/Zn mine tailings.
Shi X, Wang S, Sun H, Chen Y, Wang D, Pan H, Zou Y, Liu J, Zheng L, Zhao X, Jiang Z., Environ Sci Pollut Res Int 24(4), 2017
PMID: 27866363
Photosynthesis and growth response of maize (Zea mays L.) hybrids exposed to cadmium stress.
Akhtar T, Zia-Ur-Rehman M, Naeem A, Nawaz R, Ali S, Murtaza G, Maqsood MA, Azhar M, Khalid H, Rizwan M., Environ Sci Pollut Res Int 24(6), 2017
PMID: 28028706
Phytoextraction of Pb, Cr, Ni, and Zn using the aquatic plant Limnobium laevigatum and its potential use in the treatment of wastewater.
Arán DS, Harguinteguy CA, Fernandez-Cirelli A, Pignata ML., Environ Sci Pollut Res Int 24(22), 2017
PMID: 28639015
Aluminum exclusion from root zone and maintenance of nutrient uptake are principal mechanisms of Al tolerance in Pisum sativum L.
Kichigina NE, Puhalsky JV, Shaposhnikov AI, Azarova TS, Makarova NM, Loskutov SI, Safronova VI, Tikhonovich IA, Vishnyakova MA, Semenova EV, Kosareva IA, Belimov AA., Physiol Mol Biol Plants 23(4), 2017
PMID: 29158634
Comparative study of Cd uptake and tolerance of two Italian ryegrass (Lolium multiflorum) cultivars.
Fang Z, Lou L, Tai Z, Wang Y, Yang L, Hu Z, Cai Q., PeerJ 5(), 2017
PMID: 29018594
Role of salicylic acid in resistance to cadmium stress in plants.
Liu Z, Ding Y, Wang F, Ye Y, Zhu C., Plant Cell Rep 35(4), 2016
PMID: 26849671
Silicon-induced reversibility of cadmium toxicity in rice.
Farooq MA, Detterbeck A, Clemens S, Dietz KJ., J Exp Bot 67(11), 2016
PMID: 27122572
Role of Silicon Counteracting Cadmium Toxicity in Alfalfa (Medicago sativa L.).
Kabir AH, Hossain MM, Khatun MA, Mandal A, Haider SA., Front Plant Sci 7(), 2016
PMID: 27512401
Catalase and ascorbate peroxidase-representative H2O2-detoxifying heme enzymes in plants.
Anjum NA, Sharma P, Gill SS, Hasanuzzaman M, Khan EA, Kachhap K, Mohamed AA, Thangavel P, Devi GD, Vasudhevan P, Sofo A, Khan NA, Misra AN, Lukatkin AS, Singh HP, Pereira E, Tuteja N., Environ Sci Pollut Res Int 23(19), 2016
PMID: 27549233
Interaction Between Cadmium Stress and Sulphur Nutrition Level on Macronutrient Status of Sinapis alba L.
Matraszek R, Hawrylak-Nowak B, Chwil S, Chwil M., Water Air Soil Pollut 227(9), 2016
PMID: 27682198
Phytoremediation potential of transplanted bare-root seedlings of trees for lead/zinc and copper mine tailings.
Shi X, Chen YT, Wang SF, Pan HW, Sun HJ, Liu CX, Liu JF, Jiang ZP., Int J Phytoremediation 18(11), 2016
PMID: 27216539
Minimising toxicity of cadmium in plants--role of plant growth regulators.
Asgher M, Khan MI, Anjum NA, Khan NA., Protoplasma 252(2), 2015
PMID: 25303855
Lipids and proteins--major targets of oxidative modifications in abiotic stressed plants.
Anjum NA, Sofo A, Scopa A, Roychoudhury A, Gill SS, Iqbal M, Lukatkin AS, Pereira E, Duarte AC, Ahmad I., Environ Sci Pollut Res Int 22(6), 2015
PMID: 25471723
Influence of sulfur and cadmium on antioxidants, phytochelatins and growth in Indian mustard.
Bashir H, Ibrahim MM, Bagheri R, Ahmad J, Arif IA, Baig MA, Qureshi MI., AoB Plants 7(), 2015
PMID: 25587194
Zinc ameliorates copper-induced oxidative stress in developing rice (Oryza sativa L.) seedlings.
Thounaojam TC, Panda P, Choudhury S, Patra HK, Panda SK., Protoplasma 251(1), 2014
PMID: 23832522
Plant peptides in defense and signaling.
Marmiroli N, Maestri E., Peptides 56(), 2014
PMID: 24681437
Arsenate induced differential response in rice genotypes.
Gupta M, Ahmad MA., Ecotoxicol Environ Saf 107(), 2014
PMID: 24905696
Plant chitinase responses to different metal-type stresses reveal specificity.
Mészáros P, Rybanský L, Spieß N, Socha P, Kuna R, Libantová J, Moravčíková J, Piršelová B, Hauptvogel P, Matušíková I., Plant Cell Rep 33(11), 2014
PMID: 25023875
Mechanisms associated with Fe-deficiency tolerance and signaling in shoots of Pisum sativum.
Kabir AH, Paltridge NG, Roessner U, Stangoulis JC., Physiol Plant 147(3), 2013
PMID: 22913816
Growth and physiological responses to cadmium stress of two populations of Dittrichia viscosa (L.) Greuter.
Fernández R, Bertrand A, Reis R, Mourato MP, Martins LL, González A., J Hazard Mater 244-245(), 2013
PMID: 23183345
Cultivar-specific kinetics of chitinase induction in soybean roots during exposure to arsenic.
Mészáros P, Rybanský L, Hauptvogel P, Kuna R, Libantová J, Moravčíková J, Piršelová B, Tirpáková A, Matušíková I., Mol Biol Rep 40(3), 2013
PMID: 23192611
Mechanisms associated with Fe‐deficiency tolerance and signaling in shoots of Pisum sativum
Kabir AH, Paltridge NG, Roessner U, Stangoulis JCR., Physiol Plant 147(3), 2013
PMID: IND500643939
A transcriptomic network underlies microstructural and physiological responses to cadmium in Populus x canescens.
He J, Li H, Luo J, Ma C, Li S, Qu L, Gai Y, Jiang X, Janz D, Polle A, Tyree M, Luo ZB., Plant Physiol 162(1), 2013
PMID: 23530184
A bioassessment of soil nickel genotoxic effect in orchard planted on rehabilitated coalmine overburden.
Ličina V, Akšić MF, Colić S, Zec G., Ecotoxicol Environ Saf 98(), 2013
PMID: 24080096
The Cd‐tolerant rice mutant cadH‐5 is a high Cd accumulator and shows enhanced antioxidant activity
Shen G, Zhu C, Shangguan L, Du Q., Journal of plant nutrition and soil science = Zeitschrift fur Pflanzenernahrung und Bodenkunde. 175(2), 2012
PMID: IND44733090
Molecular mechanistic model of plant heavy metal tolerance.
Thapa G, Sadhukhan A, Panda SK, Sahoo L., Biometals 25(3), 2012
PMID: 22481367
Cadmium in potato and soybeans: Do phosphate fertilization and soil management systems play a role?
Corguinha APB, Gonçalves VC, Souza GAd, Lima WEAd, Penido ES, Pinto CABP, Francisco EAB, Guilherme LRG., J Food Compost Anal 27(1), 2012
PMID: IND44720979
Defense responses of soybean roots during exposure to cadmium, excess of nitrogen supply and combinations of these stressors.
Konotop Y, Mészáros P, Spieß N, Mistríková V, Piršelová B, Libantová J, Moravčíková J, Taran N, Hauptvogel P, Matušíková I., Mol Biol Rep 39(12), 2012
PMID: 22941249
Effects of cadmium, chromium and lead on growth, metal uptake and antioxidative capacity in Typha angustifolia.
Bah AM, Dai H, Zhao J, Sun H, Cao F, Zhang G, Wu F., Biol Trace Elem Res 142(1), 2011
PMID: 20552296
Biochemical and physiological comparison of heavy metal-triggered defense responses in the monocot maize and dicot soybean roots.
Piršelová B, Kuna R, Libantová J, Moravčíková J, Matušíková I., Mol Biol Rep 38(5), 2011
PMID: 21104138
Cadmium stress tolerance in crop plants: probing the role of sulfur.
Gill SS, Tuteja N., Plant Signal Behav 6(2), 2011
PMID: 21330784
Nitrogen nutrient status induces sexual differences in responses to cadmium in Populus yunnanensis.
Chen L, Han Y, Jiang H, Korpelainen H, Li C., J Exp Bot 62(14), 2011
PMID: 21778178
Intraspecific variation of physiological and molecular response to cadmium stress in Populus nigra L.
Gaudet M, Pietrini F, Beritognolo I, Iori V, Zacchini M, Massacci A, Mugnozza GS, Sabatti M., Tree Physiol 31(12), 2011
PMID: 21949013
Regulatory networks of cadmium stress in plants.
DalCorso G, Farinati S, Furini A., Plant Signal Behav 5(6), 2010
PMID: 20404494
Proline improves copper tolerance in chickpea (Cicer arietinum).
Singh V, Bhatt I, Aggarwal A, Tripathi BN, Munjal AK, Sharma V., Protoplasma 245(1-4), 2010
PMID: 20625778
Cadmium accumulation and tolerance of two safflower cultivars in relation to photosynthesis and antioxidative enzymes.
Shi G, Liu C, Cai Q, Liu Q, Hou C., Bull Environ Contam Toxicol 85(3), 2010
PMID: 20640847
Modulation of antioxidant defence system for arsenic detoxification in Indian mustard.
Khan I, Ahmad A, Iqbal M., Ecotoxicol Environ Saf 72(2), 2009
PMID: 18262648
Exogenous treatment with salicylic acid attenuates cadmium toxicity in pea seedlings.
Popova LP, Maslenkova LT, Yordanova RY, Ivanova AP, Krantev AP, Szalai G, Janda T., Plant Physiol Biochem 47(3), 2009
PMID: 19091585
The relationship between metal toxicity and cellular redox imbalance.
Sharma SS, Dietz KJ., Trends Plant Sci 14(1), 2009
PMID: 19070530
Characterization of cadmium uptake and translocation in a cadmium-sensitive mutant of rice (Oryza sativa L. ssp. japonica).
He JY, Ren YF, Wang FJ, Pan XB, Zhu C, Jiang DA., Arch Environ Contam Toxicol 57(2), 2009
PMID: 19112560
Exogenous proline and glycinebetaine increase antioxidant enzyme activities and confer tolerance to cadmium stress in cultured tobacco cells.
Islam MM, Hoque MA, Okuma E, Banu MN, Shimoishi Y, Nakamura Y, Murata Y., J Plant Physiol 166(15), 2009
PMID: 19423184
Enhancement of Cd tolerance in transgenic tobacco plants overexpressing a Cd-induced catalase cDNA.
Guan Z, Chai T, Zhang Y, Xu J, Wei W., Chemosphere 76(5), 2009
PMID: 19473687
Heavy-metal stress induced accumulation of chitinase isoforms in plants.
Békésiová B, Hraska S, Libantová J, Moravcíková J, Matusíková I., Mol Biol Rep 35(4), 2008
PMID: 17701287
Carbon monoxide alleviates cadmium-induced oxidative damage by modulating glutathione metabolism in the roots of Medicago sativa.
Han Y, Zhang J, Chen X, Gao Z, Xuan W, Xu S, Ding X, Shen W., New Phytol 177(1), 2008
PMID: 18028301
Plant peptides and peptidomics.
Farrokhi N, Whitelegge JP, Brusslan JA., Plant Biotechnol J 6(2), 2008
PMID: 18069950
Alterations of the gene expression, lipid peroxidation, proline and thiol content along the barley root exposed to cadmium.
Tamás L, Dudíková J, Durceková K, Halusková L, Huttová J, Mistrík I, Ollé M., J Plant Physiol 165(11), 2008
PMID: 18155806
Heme oxygenase and catalase gene expression in nodules and roots of soybean plants subjected to cadmium stress.
Balestrasse KB, Yannarelli GG, Noriega GO, Batlle A, Tomaro ML., Biometals 21(4), 2008
PMID: 18228149
Metalliferous and non-metalliferous populations of Viola tricolor represent similar mode of antioxidative response.
Słomka A, Libik-Konieczny M, Kuta E, Miszalski Z., J Plant Physiol 165(15), 2008
PMID: 18242767
Quantitative changes in protein expression of cadmium-exposed poplar plants.
Kieffer P, Dommes J, Hoffmann L, Hausman JF, Renaut J., Proteomics 8(12), 2008
PMID: 18563750
Rhizosphere localized cationic peroxidase from barley roots is strongly activated by cadmium and correlated with root growth inhibition.
Tamás L, Durceková K, Halusková L, Huttová J, Mistrík I, Ollé M., Chemosphere 66(7), 2007
PMID: 16949638
Cadmium effects on populations of root nuclei in two pea genotypes inoculated or not with the arbuscular mycorrhizal fungus Glomus mosseae.
Repetto O, Massa N, Gianinazzi-Pearson V, Dumas-Gaudot E, Berta G., Mycorrhiza 17(2), 2007
PMID: 17109143
A chemically induced new pea (Pisum sativum) mutant SGECdt with increased tolerance to, and accumulation of, cadmium.
Tsyganov VE, Belimov AA, Borisov AY, Safronova VI, Georgi M, Dietz KJ, Tikhonovich IA., Ann Bot 99(2), 2007
PMID: 17259229
Biochemical and molecular characterization of the mitochondrial peroxiredoxin PsPrxII F from Pisum sativum.
Barranco-Medina S, Krell T, Finkemeier I, Sevilla F, Lázaro JJ, Dietz KJ., Plant Physiol Biochem 45(10-11), 2007
PMID: 17881238
Gene response profiles for Daphnia pulex exposed to the environmental stressor cadmium reveals novel crustacean metallothioneins.
Shaw JR, Colbourne JK, Davey JC, Glaholt SP, Hampton TH, Chen CY, Folt CL, Hamilton JW., BMC Genomics 8(), 2007
PMID: 18154678
Comparative study of cadmium effects on membrane lipid composition of Brassica juncea and Brassica napus leaves
Nouairi I, Ben Ammar W, Ben Youssef N, Ben Miled Daoud D, Ghorbal MH, Zarrouk M., Plant Sci 170(3), 2006
PMID: IND43813214

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

PMID: 15533881
PubMed | Europe PMC

Suchen in

Google Scholar