The mitochondrial type II peroxiredoxin F is essential for redox homeostasis and root growth of Arabidopsis thaliana under stress

Finkemeier I, Goodman M, Lamkemeyer P, Kandlbinder A, Sweetlove LJ, Dietz K-J (2005)
JOURNAL OF BIOLOGICAL CHEMISTRY 280(13): 12168-12180.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Autor/in
; ; ; ; ;
Abstract / Bemerkung
Peroxiredoxins (Prx) have recently moved into the focus of plant and animal research in the context of development, adaptation, and disease, as they function both in antioxidant defense by reducing a broad range of toxic peroxides and in redox signaling relating to the adjustment of cell redox and antioxidant metabolism. At-PrxII F is one of six type II Prx identified in the genome of Arabidopsis thaliana and the only Prx that is targeted to the plant mitochondrion. Therefore, it might be assumed to have functions similar to the human 2-Cys Prx (PRDX3) and type II Prx (PRDX5) and yeast 1-Cys Prx that likewise have mitochondrial localizations. This paper presents a characterization of PrxII F at the level of subcellular distribution, activity, and reductive regeneration by mitochondrial thioredoxin and glutaredoxin. By employing tDNA insertion mutants of A. thaliana lacking expression of AtprxII F (KO-AtPrxII F), it is shown that under optimal environmental conditions the absence of PrxII F is almost fully compensated for, possibly by increases in activity of mitochondrial ascorbate peroxidase and glutathione-dependent peroxidase. However, a stronger inhibition of root growth in KO-AtPrxII F seedlings as compared with wild type is observed under stress conditions induced by CdCl2 as well as after administration of salicylhydroxamic acid, an inhibitor of cyanide-insensitive respiration. Simultaneously, major changes in the abundance of both nuclear and mitochondria-encoded transcripts were observed. These results assign a principal role to PrxII F in antioxidant defense and possibly redox signaling in plants cells.
Erscheinungsjahr
2005
Zeitschriftentitel
JOURNAL OF BIOLOGICAL CHEMISTRY
Band
280
Ausgabe
13
Seite(n)
12168-12180
ISSN
0021-9258
eISSN
1083-351X
Page URI
https://pub.uni-bielefeld.de/record/1604374

Zitieren

Finkemeier I, Goodman M, Lamkemeyer P, Kandlbinder A, Sweetlove LJ, Dietz K-J. The mitochondrial type II peroxiredoxin F is essential for redox homeostasis and root growth of Arabidopsis thaliana under stress. JOURNAL OF BIOLOGICAL CHEMISTRY. 2005;280(13):12168-12180.
Finkemeier, I., Goodman, M., Lamkemeyer, P., Kandlbinder, A., Sweetlove, L. J., & Dietz, K. - J. (2005). The mitochondrial type II peroxiredoxin F is essential for redox homeostasis and root growth of Arabidopsis thaliana under stress. JOURNAL OF BIOLOGICAL CHEMISTRY, 280(13), 12168-12180. doi:10.1074/jbc.M413189200
Finkemeier, I., Goodman, M., Lamkemeyer, P., Kandlbinder, A., Sweetlove, L. J., and Dietz, K. - J. (2005). The mitochondrial type II peroxiredoxin F is essential for redox homeostasis and root growth of Arabidopsis thaliana under stress. JOURNAL OF BIOLOGICAL CHEMISTRY 280, 12168-12180.
Finkemeier, I., et al., 2005. The mitochondrial type II peroxiredoxin F is essential for redox homeostasis and root growth of Arabidopsis thaliana under stress. JOURNAL OF BIOLOGICAL CHEMISTRY, 280(13), p 12168-12180.
I. Finkemeier, et al., “The mitochondrial type II peroxiredoxin F is essential for redox homeostasis and root growth of Arabidopsis thaliana under stress”, JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 280, 2005, pp. 12168-12180.
Finkemeier, I., Goodman, M., Lamkemeyer, P., Kandlbinder, A., Sweetlove, L.J., Dietz, K.-J.: The mitochondrial type II peroxiredoxin F is essential for redox homeostasis and root growth of Arabidopsis thaliana under stress. JOURNAL OF BIOLOGICAL CHEMISTRY. 280, 12168-12180 (2005).
Finkemeier, I, Goodman, M, Lamkemeyer, P, Kandlbinder, Andrea, Sweetlove, LJ, and Dietz, Karl-Josef. “The mitochondrial type II peroxiredoxin F is essential for redox homeostasis and root growth of Arabidopsis thaliana under stress”. JOURNAL OF BIOLOGICAL CHEMISTRY 280.13 (2005): 12168-12180.

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 15632145
PubMed | Europe PMC

Suchen in

Google Scholar