Characterization of the Xanthomonas campestris pv. campestris lipopolysaccharide substructures essential for elicitation of an oxidative burst in tobacco cells

Braun SG, Meyer A, Olst O, Pühler A, Niehaus K (2005)
Molecular Plant - Microbe Interactions 18(7): 674-681.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Braun, S. G.; Meyer, A.; Olst, O.; Pühler, AlfredUniBi ; Niehaus, KarstenUniBi
Abstract / Bemerkung
The lipopolysaccharides (LPS) of gram-negative bacteria are essential for perception of pathogens by animals and plants. To identify the LPS substructure or substructures recognized by plants, we isolated water-phase (w)LPS from different Xanthomonas campestris pv. campestris mutants and analyzed their sugar content and ability to elicit an oxidative burst in tobacco cell cultures. The different wLPS species are characterized by lacking repetitive subunits of the O-antigen, the complete O-antigen, or even most of the core region. Because loss of lipid A would be lethal to bacteria, pure lipid A was obtained from X. campestris pv. campestris wild-type wLPS by chemical hydrolysis. The elicitation experiments with tobacco cell cultures revealed that LPS detection is dependent on the bioavailability of the amphiphilic wLPS, which can form micelles in an aqueous environment. By adding deoxycholate to prevent micelle formation, all of the tested wLPS species showed elicitation capability, whereas the lipid A alone was not able to trigger an oxidative burst or calcium transients in tobacco cell cultures. These results suggest that the LPS substructure recognized by tobacco cells is localized in the inner core region of the LPS, consisting of glucose, gallacturonic acid, and 3-deoxy-d-manno-oct-2-ulosonic acids. Although lipid A alone seems to be insufficient to induce an oxidative burst in tobacco cell cultures, it cannot be ruled out that lipid A or the glucosamine backbone may be important in combination with the inner core structures.
Stichworte
pathogen-associated molecular patterns (PAMPs); nonhost resistance
Erscheinungsjahr
2005
Zeitschriftentitel
Molecular Plant - Microbe Interactions
Band
18
Ausgabe
7
Seite(n)
674-681
ISSN
0894-0282
Page URI
https://pub.uni-bielefeld.de/record/1603291

Zitieren

Braun SG, Meyer A, Olst O, Pühler A, Niehaus K. Characterization of the Xanthomonas campestris pv. campestris lipopolysaccharide substructures essential for elicitation of an oxidative burst in tobacco cells. Molecular Plant - Microbe Interactions. 2005;18(7):674-681.
Braun, S. G., Meyer, A., Olst, O., Pühler, A., & Niehaus, K. (2005). Characterization of the Xanthomonas campestris pv. campestris lipopolysaccharide substructures essential for elicitation of an oxidative burst in tobacco cells. Molecular Plant - Microbe Interactions, 18(7), 674-681. doi:10.1094/MPMI-18-0674
Braun, S. G., Meyer, A., Olst, O., Pühler, A., and Niehaus, K. (2005). Characterization of the Xanthomonas campestris pv. campestris lipopolysaccharide substructures essential for elicitation of an oxidative burst in tobacco cells. Molecular Plant - Microbe Interactions 18, 674-681.
Braun, S.G., et al., 2005. Characterization of the Xanthomonas campestris pv. campestris lipopolysaccharide substructures essential for elicitation of an oxidative burst in tobacco cells. Molecular Plant - Microbe Interactions, 18(7), p 674-681.
S.G. Braun, et al., “Characterization of the Xanthomonas campestris pv. campestris lipopolysaccharide substructures essential for elicitation of an oxidative burst in tobacco cells”, Molecular Plant - Microbe Interactions, vol. 18, 2005, pp. 674-681.
Braun, S.G., Meyer, A., Olst, O., Pühler, A., Niehaus, K.: Characterization of the Xanthomonas campestris pv. campestris lipopolysaccharide substructures essential for elicitation of an oxidative burst in tobacco cells. Molecular Plant - Microbe Interactions. 18, 674-681 (2005).
Braun, S. G., Meyer, A., Olst, O., Pühler, Alfred, and Niehaus, Karsten. “Characterization of the Xanthomonas campestris pv. campestris lipopolysaccharide substructures essential for elicitation of an oxidative burst in tobacco cells”. Molecular Plant - Microbe Interactions 18.7 (2005): 674-681.

25 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

OsCERK1 plays a crucial role in the lipopolysaccharide-induced immune response of rice.
Desaki Y, Kouzai Y, Ninomiya Y, Iwase R, Shimizu Y, Seko K, Molinaro A, Minami E, Shibuya N, Kaku H, Nishizawa Y., New Phytol 217(3), 2018
PMID: 29194635
Lipopolysaccharides Trigger Two Successive Bursts of Reactive Oxygen Species at Distinct Cellular Locations.
Shang-Guan K, Wang M, Htwe NMPS, Li P, Li Y, Qi F, Zhang D, Cao M, Kim C, Weng H, Cen H, Black IM, Azadi P, Carlson RW, Stacey G, Liang Y., Plant Physiol 176(3), 2018
PMID: 29431629
Comparative transcription profiling of two fermentation cultures of Xanthomonas campestris pv. campestris B100 sampled in the growth and in the stationary phase.
Alkhateeb RS, Vorhölter FJ, Steffens T, Rückert C, Ortseifen V, Hublik G, Niehaus K, Pühler A., Appl Microbiol Biotechnol 102(15), 2018
PMID: 29858955
The influence of a modified lipopolysaccharide O-antigen on the biosynthesis of xanthan in Xanthomonas campestris pv. campestris B100.
Steffens T, Vorhölter FJ, Giampà M, Hublik G, Pühler A, Niehaus K., BMC Microbiol 16(), 2016
PMID: 27215401
Chemistry of lipid A: at the heart of innate immunity.
Molinaro A, Holst O, Di Lorenzo F, Callaghan M, Nurisso A, D'Errico G, Zamyatina A, Peri F, Berisio R, Jerala R, Jiménez-Barbero J, Silipo A, Martín-Santamaría S., Chemistry 21(2), 2015
PMID: 25353096
MAMP (microbe-associated molecular pattern) triggered immunity in plants.
Newman MA, Sundelin T, Nielsen JT, Erbs G., Front Plant Sci 4(), 2013
PMID: 23720666
Dynamic protein phosphorylation during the growth of Xanthomonas campestris pv. campestris B100 revealed by a gel-based proteomics approach.
Musa YR, Bäsell K, Schatschneider S, Vorhölter FJ, Becher D, Niehaus K., J Biotechnol 167(2), 2013
PMID: 23792782
Structural analysis and involvement in plant innate immunity of Xanthomonas axonopodis pv. citri lipopolysaccharide.
Casabuono A, Petrocelli S, Ottado J, Orellano EG, Couto AS., J Biol Chem 286(29), 2011
PMID: 21596742
Herbaspirillum seropedicae rfbB and rfbC genes are required for maize colonization.
Balsanelli E, Serrato RV, de Baura VA, Sassaki G, Yates MG, Rigo LU, Pedrosa FO, de Souza EM, Monteiro RA., Environ Microbiol 12(8), 2010
PMID: 21966916
The Xanthomonas oryzae pv. oryzae PhoPQ two-component system is required for AvrXA21 activity, hrpG expression, and virulence.
Lee SW, Jeong KS, Han SW, Lee SE, Phee BK, Hahn TR, Ronald P., J Bacteriol 190(6), 2008
PMID: 18203830
Influence of Campylobacter fetus subsp. fetus on ram sperm cell quality.
Zan Bar T, Yehuda R, Hacham T, Krupnik S, Bartoov B., J Med Microbiol 57(pt 11), 2008
PMID: 18927420
Priming, induction and modulation of plant defence responses by bacterial lipopolysaccharides.
Newman MA, Dow JM, Molinaro A, Parrilli M., J Endotoxin Res 13(2), 2007
PMID: 17621548
Death don't have no mercy and neither does calcium: Arabidopsis CYCLIC NUCLEOTIDE GATED CHANNEL2 and innate immunity.
Ali R, Ma W, Lemtiri-Chlieh F, Tsaltas D, Leng Q, von Bodman S, Berkowitz GA., Plant Cell 19(3), 2007
PMID: 17384171
Bacterial lipopolysaccharides induce defense responses associated with programmed cell death in rice cells.
Desaki Y, Miya A, Venkatesh B, Tsuyumu S, Yamane H, Kaku H, Minami E, Shibuya N., Plant Cell Physiol 47(11), 2006
PMID: 17018557

33 References

Daten bereitgestellt von Europe PubMed Central.

Critical aggregation concentrations of gram-negative bacterial lipopolysaccharides (LPS).
Aurell CA, Wistrom AO., Biochem. Biophys. Res. Commun. 253(1), 1998
PMID: 9875230
Transgenic aequorin monitors cytosolic calcium transients in soybean cells challenged with β-glucan or chitin elicitors
Mithöfer, Planta 207(4), 1999
Alfalfa and tobacco cells react differently to chitin oligosaccharides and sinorhizobium meliloti nodulation factors
Baier R, Schiene K, Kohring B, Flaschel E, Niehaus K., Planta 210(1), 1999
PMID: 10592044
Nonhost resistance and nonspecific plant defenses.
Heath MC., Curr. Opin. Plant Biol. 3(4), 2000
PMID: 10873843
Plants have a sensitive perception system for the most conserved domain of bacterial flagellin.
Felix G, Duran JD, Volko S, Boller T., Plant J. 18(3), 1999
PMID: 10377992
Prior exposure to lipopolysaccharide potentiates expression of plant defenses in response to bacteria.
Newman MA, von Roepenack-Lahaye E, Parr A, Daniels MJ, Dow JM., Plant J. 29(4), 2002
PMID: 11846881
PHYTOALEXINS: What Have We Learned After 60 Years?
Hammerschmidt R., Annu Rev Phytopathol 37(), 1999
PMID: 11701825
The Induction and Modulation of Plant Defense Responses by Bacterial Lipopolysaccharides.
Dow M, Newman MA, von Roepenack E., Annu Rev Phytopathol 38(), 2000
PMID: 11701843
Innate immunity in plants and animals: striking similarities and obvious differences.
Nurnberger T, Brunner F, Kemmerling B, Piater L., Immunol. Rev. 198(), 2004
PMID: 15199967
Targeted deletion of the lipopolysaccharide (LPS)-binding protein gene leads to profound suppression of LPS responses ex vivo, whereas in vivo responses remain intact.
Wurfel MM, Monks BG, Ingalls RR, Dedrick RL, Delude R, Zhou D, Lamping N, Schumann RR, Thieringer R, Fenton MJ, Wright SD, Golenbock D., J. Exp. Med. 186(12), 1997
PMID: 9396775
Lipopolysaccharide endotoxins.
Raetz CR, Whitfield C., Annu. Rev. Biochem. 71(), 2001
PMID: 12045108
Lipopolysaccharide-binding protein is required to combat a murine gram-negative bacterial infection.
Jack RS, Fan X, Bernheiden M, Rune G, Ehlers M, Weber A, Kirsch G, Mentel R, Furll B, Freudenberg M, Schmitz G, Stelter F, Schutt C., Nature 389(6652), 1997
PMID: 9338787
Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene.
Poltorak A, He X, Smirnova I, Liu MY, Van Huffel C, Du X, Birdwell D, Alejos E, Silva M, Galanos C, Freudenberg M, Ricciardi-Castagnoli P, Layton B, Beutler B., Science 282(5396), 1998
PMID: 9851930
A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures
Murashige, Physiologia Plantarum 15(3), 1962
Toll-like receptors: key mediators of microbe detection.
Underhill DM, Ozinsky A., Curr. Opin. Immunol. 14(1), 2002
PMID: 11790539
Bacterial avirulence proteins as triggers of plant disease resistance.
Van den Ackerveken G, Bonas U., Trends Microbiol. 5(10), 1997
PMID: 9351175
Quantification of hydrogen peroxide in plant extracts by the chemiluminescence reaction with luminol
Warm, Phytochemistry 21(4), 1982
Endotoxin-tolerant mice have mutations in Toll-like receptor 4 (Tlr4)
Qureshi ST, Lariviere L, Leveque G, Clermont S, Moore KJ, Gros P, Malo D., J. Exp. Med. 189(4), 1999
PMID: 9989976
Sensitive silver-staining detection of bacterial lipopolysaccharides in polyacrylamide gels.
Kittelberger R, Hilbink F., J. Biochem. Biophys. Methods 26(1), 1993
PMID: 8387076
Receptor-like protein kinases: the keys to response.
Morris ER, Walker JC., Curr. Opin. Plant Biol. 6(4), 2003
PMID: 12873528
Pattern recognition molecules and innate immunity to parasites.
McGuinness DH, Dehal PK, Pleass RJ., Trends Parasitol. 19(7), 2003
PMID: 12855382
Elicitation of plants and microbial cell systems.
Radman R, Saez T, Bucke C, Keshavarz T., Biotechnol. Appl. Biochem. 37(Pt 1), 2003
PMID: 12578556

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 16042013
PubMed | Europe PMC

Suchen in

Google Scholar