Combined transcriptome profiling reveals a novel family of arbuscular mycorrhizal-specific Medicago truncatula lectin genes

Frenzel A, Manthey K, Perlick AM, Meyer F, Pühler A, Küster H, Krajinski F (2005)
Mol Plant-Microbe Interact 18(8): 771-782.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Frenzel, A.; Manthey, KatjaUniBi; Perlick, A. M.; Meyer, F.; Pühler, AlfredUniBi ; Küster, Helge; Krajinski, F.
Abstract / Bemerkung
The large majority of plants are capable of undergoing a tight symbiosis with arbuscular mycorrhizal (AM) fungi. During this symbiosis, highly specialized new structures called arbuscules are formed within the host cells, indicating that, during interaction with AM fungi, plants express AM-specific genetic programs. Despite increasing efforts, the number of genes known to be induced in the AM symbiosis is still low. In order to identify novel AM-induced genes which have not been listed before, 5,646 expressed sequence tags (ESTs) were generated from two Medicago truncatula cDNA libraries: a random cDNA library (MtAmp) and a suppression subtractive hybridization (SSH) library (MtGim), the latter being designed to enhance the cloning of mycorrhiza-upregulated genes. In silico expression analysis was applied to identify those tentative consensus sequences (TCs) of The Institute for Genomic Research M. truncatula gene index (MtGI) that are composed exclusively of ESTs deriving from the MtGim or MtAmp library, but not from any other cDNA library of the MtGI. This search revealed 115 MtAmp- or MTGim-specific TCs. For the majority of these TCs with sequence similarities to plant genes, the AM-specific expression was verified by quantitative reverse-transcription polymerase chain reaction. Annotation of the novel genes induced in mycorrhizal roots suggested their involvement in different transport as well as signaling processes and revealed a novel family of AM-specific lectin genes. The expression of reporter gene fusions in transgenic roots revealed an arbuscule-related expression of two members of the lectin gene family, indicating a role for AM-specific lectins during arbuscule formation or functioning.
Stichworte
eNorthern; expression profiling
Erscheinungsjahr
2005
Zeitschriftentitel
Mol Plant-Microbe Interact
Band
18
Ausgabe
8
Seite(n)
771-782
ISSN
0894-0282
Page URI
https://pub.uni-bielefeld.de/record/1602933

Zitieren

Frenzel A, Manthey K, Perlick AM, et al. Combined transcriptome profiling reveals a novel family of arbuscular mycorrhizal-specific Medicago truncatula lectin genes. Mol Plant-Microbe Interact. 2005;18(8):771-782.
Frenzel, A., Manthey, K., Perlick, A. M., Meyer, F., Pühler, A., Küster, H., & Krajinski, F. (2005). Combined transcriptome profiling reveals a novel family of arbuscular mycorrhizal-specific Medicago truncatula lectin genes. Mol Plant-Microbe Interact, 18(8), 771-782. https://doi.org/10.1094/MPM1-18-0771
Frenzel, A., Manthey, Katja, Perlick, A. M., Meyer, F., Pühler, Alfred, Küster, Helge, and Krajinski, F. 2005. “Combined transcriptome profiling reveals a novel family of arbuscular mycorrhizal-specific Medicago truncatula lectin genes”. Mol Plant-Microbe Interact 18 (8): 771-782.
Frenzel, A., Manthey, K., Perlick, A. M., Meyer, F., Pühler, A., Küster, H., and Krajinski, F. (2005). Combined transcriptome profiling reveals a novel family of arbuscular mycorrhizal-specific Medicago truncatula lectin genes. Mol Plant-Microbe Interact 18, 771-782.
Frenzel, A., et al., 2005. Combined transcriptome profiling reveals a novel family of arbuscular mycorrhizal-specific Medicago truncatula lectin genes. Mol Plant-Microbe Interact, 18(8), p 771-782.
A. Frenzel, et al., “Combined transcriptome profiling reveals a novel family of arbuscular mycorrhizal-specific Medicago truncatula lectin genes”, Mol Plant-Microbe Interact, vol. 18, 2005, pp. 771-782.
Frenzel, A., Manthey, K., Perlick, A.M., Meyer, F., Pühler, A., Küster, H., Krajinski, F.: Combined transcriptome profiling reveals a novel family of arbuscular mycorrhizal-specific Medicago truncatula lectin genes. Mol Plant-Microbe Interact. 18, 771-782 (2005).
Frenzel, A., Manthey, Katja, Perlick, A. M., Meyer, F., Pühler, Alfred, Küster, Helge, and Krajinski, F. “Combined transcriptome profiling reveals a novel family of arbuscular mycorrhizal-specific Medicago truncatula lectin genes”. Mol Plant-Microbe Interact 18.8 (2005): 771-782.

32 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Comparative transcriptome analysis of Poncirus trifoliata identifies a core set of genes involved in arbuscular mycorrhizal symbiosis.
An J, Sun M, van Velzen R, Ji C, Zheng Z, Limpens E, Bisseling T, Deng X, Xiao S, Pan Z., J Exp Bot 69(21), 2018
PMID: 30312435
Combined genetic and transcriptomic analysis reveals three major signalling pathways activated by Myc-LCOs in Medicago truncatula.
Camps C, Jardinaud MF, Rengel D, Carrère S, Hervé C, Debellé F, Gamas P, Bensmihen S, Gough C., New Phytol 208(1), 2015
PMID: 25919491
Hyphal Branching during Arbuscule Development Requires Reduced Arbuscular Mycorrhiza1.
Park HJ, Floss DS, Levesque-Tremblay V, Bravo A, Harrison MJ., Plant Physiol 169(4), 2015
PMID: 26511916
Nitrate regulates rhizobial and mycorrhizal symbiosis in common bean (Phaseolus vulgaris L.).
Nanjareddy K, Blanco L, Arthikala MK, Affantrange XA, Sánchez F, Lara M., J Integr Plant Biol 56(3), 2014
PMID: 24387000
The role of the cell wall compartment in mutualistic symbioses of plants.
Rich MK, Schorderet M, Reinhardt D., Front Plant Sci 5(), 2014
PMID: 24917869
DELLA proteins regulate arbuscule formation in arbuscular mycorrhizal symbiosis.
Floss DS, Levy JG, Lévesque-Tremblay V, Pumplin N, Harrison MJ., Proc Natl Acad Sci U S A 110(51), 2013
PMID: 24297892
Medicago truncatula mtpt4 mutants reveal a role for nitrogen in the regulation of arbuscule degeneration in arbuscular mycorrhizal symbiosis.
Javot H, Penmetsa RV, Breuillin F, Bhattarai KK, Noar RD, Gomez SK, Zhang Q, Cook DR, Harrison MJ., Plant J 68(6), 2011
PMID: 21848683
Characterizing variation in mycorrhiza effect among diverse plant varieties.
Sawers RJ, Gebreselassie MN, Janos DP, Paszkowski U., Theor Appl Genet 120(5), 2010
PMID: 20012933
Localized expression of arbuscular mycorrhiza-inducible ammonium transporters in soybean.
Kobae Y, Tamura Y, Takai S, Banba M, Hata S., Plant Cell Physiol 51(9), 2010
PMID: 20627949
Comparative proteomic studies of root-microbe interactions.
Mathesius U., J Proteomics 72(3), 2009
PMID: 19152841
Medicago truncatula and Glomus intraradices gene expression in cortical cells harboring arbuscules in the arbuscular mycorrhizal symbiosis.
Gomez SK, Javot H, Deewatthanawong P, Torres-Jerez I, Tang Y, Blancaflor EB, Udvardi MK, Harrison MJ., BMC Plant Biol 9(), 2009
PMID: 19161626
The Sequence Analysis and Management System -- SAMS-2.0: data management and sequence analysis adapted to changing requirements from traditional sanger sequencing to ultrafast sequencing technologies.
Bekel T, Henckel K, Küster H, Meyer F, Mittard Runte V, Neuweger H, Paarmann D, Rupp O, Zakrzewski M, Pühler A, Stoye J, Goesmann A., J Biotechnol 140(1-2), 2009
PMID: 19297685
Plant lectins: the ties that bind in root symbiosis and plant defense.
De Hoff PL, Brill LM, Hirsch AM., Mol Genet Genomics 282(1), 2009
PMID: 19488786
Global and cell-type gene expression profiles in tomato plants colonized by an arbuscular mycorrhizal fungus.
Fiorilli V, Catoni M, Miozzi L, Novero M, Accotto GP, Lanfranco L., New Phytol 184(4), 2009
PMID: 19765230
Metabolite profiling of mycorrhizal roots of Medicago truncatula.
Schliemann W, Ammer C, Strack D., Phytochemistry 69(1), 2008
PMID: 17706732
Proteomic and transcriptional analyses of coral larvae newly engaged in symbiosis with dinoflagellates.
Deboer ML, Krupp DA, Weis VM., Comp Biochem Physiol Part D Genomics Proteomics 2(1), 2007
PMID: 20483279
Medicago truncatula gene responses specific to arbuscular mycorrhiza interactions with different species and genera of Glomeromycota.
Massoumou M, van Tuinen D, Chatagnier O, Arnould C, Brechenmacher L, Sanchez L, Selim S, Gianinazzi S, Gianinazzi-Pearson V., Mycorrhiza 17(3), 2007
PMID: 17245570
Phosphate in the arbuscular mycorrhizal symbiosis: transport properties and regulatory roles.
Javot H, Pumplin N, Harrison MJ., Plant Cell Environ 30(3), 2007
PMID: 17263776
Transcriptome profiling of Lotus japonicus roots during arbuscular mycorrhiza development and comparison with that of nodulation.
Deguchi Y, Banba M, Shimoda Y, Chechetka SA, Suzuri R, Okusako Y, Ooki Y, Toyokura K, Suzuki A, Uchiumi T, Higashi S, Abe M, Kouchi H, Izui K, Hata S., DNA Res 14(3), 2007
PMID: 17634281
Transcriptional snapshots provide insights into the molecular basis of arbuscular mycorrhiza in the model legume Medicago truncatula.
Hohnjec N, Henckel K, Bekel T, Gouzy J, Dondrup M, Goesmann A, Kuster H., Functional plant biology : FPB. 33(8), 2006
PMID: IND43838506

55 References

Daten bereitgestellt von Europe PubMed Central.

Structure, function and evolution of plant disease resistance genes.
Ellis J, Dodds P, Pryor T., Curr. Opin. Plant Biol. 3(4), 2000
PMID: 10873844
Multiple sequence alignment with Clustal X.
Jeanmougin F, Thompson JD, Gouy M, Higgins DG, Gibson TJ., Trends Biochem. Sci. 23(10), 1998
PMID: 9810230
Gapped BLAST and PSI-BLAST: a new generation of protein database search programs.
Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ., Nucleic Acids Res. 25(17), 1997
PMID: 9254694
Resistance gene-dependent plant defense responses.
Hammond-Kosack KE, Jones JD., Plant Cell 8(10), 1996
PMID: 8914325
MOLECULAR AND CELLULAR ASPECTS OF THE ARBUSCULAR MYCORRHIZAL SYMBIOSIS.
Harrison MJ., Annu. Rev. Plant Physiol. Plant Mol. Biol. 50(), 1999
PMID: 15012214
Expression profiles of 22 novel molecular markers for organogenetic pathways acting in alfalfa nodule development.
Jimenez-Zurdo JI, Frugier F, Crespi MD, Kondorosi A., Mol. Plant Microbe Interact. 13(1), 2000
PMID: 10656590
Differential expression of eight chitinase genes in Medicago truncatula roots during mycorrhiza formation, nodulation, and pathogen infection.
Salzer P, Bonanomi A, Beyer K, Vogeli-Lange R, Aeschbacher RA, Lange J, Wiemken A, Kim D, Cook DR, Boller T., Mol. Plant Microbe Interact. 13(7), 2000
PMID: 10875337
Is a fully established arbuscular mycorrhizal symbiosis required for a bioprotection of Pisum sativum roots against Aphanomyces euteiches?
Slezack S, Dumas-Gaudot E, Paynot M, Gianinazzi S., Mol. Plant Microbe Interact. 13(2), 2000
PMID: 10659715
Novel aspects of symbiotic nitrogen fixation uncovered by transcript profiling with cDNA arrays.
Colebatch G, Kloska S, Trevaskis B, Freund S, Altmann T, Udvardi MK., Mol. Plant Microbe Interact. 15(5), 2002
PMID: 12036271
Phylogeny and genomic organization of the TIR and non-tIR NBS-LRR resistance gene family in Medicago truncatula.
Zhu H, Cannon SB, Young ND, Cook DR., Mol. Plant Microbe Interact. 15(6), 2002
PMID: 12059101
Transcriptional changes in response to arbuscular mycorrhiza development in the model plant Medicago truncatula.
Wulf A, Manthey K, Doll J, Perlick AM, Linke B, Bekel T, Meyer F, Franken P, Kuster H, Krajinski F., Mol. Plant Microbe Interact. 16(4), 2003
PMID: 12744459
Transcriptome profiling in root nodules and arbuscular mycorrhiza identifies a collection of novel genes induced during Medicago truncatula root endosymbioses.
Manthey K, Krajinski F, Hohnjec N, Firnhaber C, Puhler A, Perlick AM, Kuster H., Mol. Plant Microbe Interact. 17(10), 2004
PMID: 15497399
Towards an in silico analysis of transcription patterns.
Bortoluzzi S, Danieli GA., Trends Genet. 15(3), 1999
PMID: 10203810
Exploring root symbiotic programs in the model legume Medicago truncatula using EST analysis.
Journet EP, van Tuinen D, Gouzy J, Crespeau H, Carreau V, Farmer MJ, Niebel A, Schiex T, Jaillon O, Chatagnier O, Godiard L, Micheli F, Kahn D, Gianinazzi-Pearson V, Gamas P., Nucleic Acids Res. 30(24), 2002
PMID: 12490726
Lotus japonicus, an autogamous, diploid legume species for classical and molecular genetics
Handberg, The Plant Journal 2(4), 1992
Factors affecting appressorium development in the vesicular-arbuscular mycorrhizal fungus Glomus mosseae (Nicol. & Gerd.) Gerd. & Trappe
GIOVANNETTI, New Phytologist 123(1), 2006
Lectin genes are expressed throughout root nodule development and during nitrogen-fixation in the Rhizobium-Medicago symbiosis
Bauchrowitz, The Plant Journal 9(1), 1996
Lectins as plant defense proteins.
Peumans WJ, Van Damme EJ., Plant Physiol. 109(2), 1995
PMID: 7480335
Lotus corniculatus nodulation specificity is changed by the presence of a soybean lectin gene
van Rhijn P , Goldberg RB, Hirsch AM., Plant Cell 10(8), 1998
PMID: 9707526
Advances in Legume Biology
VandenBosch, PLANT PHYSIOLOGY 131(3), 2003
Medicago truncatula, a model plant for studying the molecular genetics of theRhizobium-legume symbiosis
Barker, Plant Molecular Biology Reporter 8(1), 1990
Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries.
Diatchenko L, Lau YF, Campbell AP, Chenchik A, Moqadam F, Huang B, Lukyanov S, Lukyanov K, Gurskaya N, Sverdlov ED, Siebert PD., Proc. Natl. Acad. Sci. U.S.A. 93(12), 1996
PMID: 8650213
Genome-wide identification of nodule-specific transcripts in the model legume Medicago truncatula.
Fedorova M, van de Mortel J, Matsumoto PA, Cho J, Town CD, VandenBosch KA, Gantt JS, Vance CP., Plant Physiol. 130(2), 2002
PMID: 12376622
Molecular phylogeny and evolution of the plant-specific seven-transmembrane MLO family.
Devoto A, Hartmann HA, Piffanelli P, Elliott C, Simmons C, Taramino G, Goh CS, Cohen FE, Emerson BC, Schulze-Lefert P, Panstruga R., J. Mol. Evol. 56(1), 2003
PMID: 12569425
A new fungal phylum, the Glomeromycota: phylogeny and evolution.
Schussler A, Schwarzott D, Walker C., Mycol. Res. 105(12), 2001
PMID: IND23264612
Arbuscular mycorrhiza protect an annual grass from root pathogenic fungi in the field.
Newsham KK, Fitter AH, Watkinson AR., J. Ecol. 83(6), 1995
PMID: IND20557664
Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis
Augé, Mycorrhiza 11(1), 2001
Water and nutrient translocation by hyphae of Glomus mosseae
George, Botany 70(11), 1992
Mtha1, a Plasma Membrane H+-ATPase Gene fromMedicago truncatula,Shows Arbuscule-Specific Induced Expression in Mycorrhizal Tissue
Krajinski, Plant Biology 4(6), 2002
Root lectin as a determinant of host–plant specificity in the Rhizobium–legume symbiosis
Díaz, Nature 338(6216), 1989
A gateway cloning vector set for high-throughput functional analysis of genes in planta.
Curtis MD, Grossniklaus U., Plant Physiol. 133(2), 2003
PMID: 14555774
Hyphal transport of 15N-labelled nitrogen by a vesicular-arbuscular mycorrhizal fungus and its effect on depletion of inorganic soil N
JOHANSEN, New Phytologist 122(2), 1992
A member of the germin-like protein family is a highly conserved mycorrhiza-specific induced gene.
Doll J, Hause B, Demchenko K, Pawlowski K, Krajinski F., Plant Cell Physiol. 44(11), 2003
PMID: 14634158
Construction and validation of cDNA-based Mt6k-RIT macro- and microarrays to explore root endosymbioses in the model legume Medicago truncatula.
Kuster H, Hohnjec N, Krajinski F, El YF, Manthey K, Gouzy J, Dondrup M, Meyer F, Kalinowski J, Brechenmacher L, van Tuinen D, Gianinazzi-Pearson V, Puhler A, Gamas P, Becker A., J. Biotechnol. 108(2), 2004
PMID: 15129719
PROSITE: a documented database using patterns and profiles as motif descriptors.
Sigrist CJ, Cerutti L, Hulo N, Gattiker A, Falquet L, Pagni M, Bairoch A, Bucher P., Brief. Bioinformatics 3(3), 2002
PMID: 12230035
MtENOD16 and 20 are members of a family of phytocyanin-related early nodulins.
Greene EA, Erard M, Dedieu A, Barker DG., Plant Mol. Biol. 36(5), 1998
PMID: 9526510
Lectin genes from the legume Medicago truncatula.
Bauchrowitz MA, Barker DG, Nadaud I, Rouge P, Lescure B., Plant Mol. Biol. 19(6), 1992
PMID: 1511126
Colonisation patterns of root tissues byPhytophthora nicotianae var.parasitica related to reduced disease in mycorrhizal tomato
Cordier, Plant and Soil 185(2), 1996
Expression of nitrate transporter genes in tomato colonized by an arbuscular mycorrhizal fungus.
Hildebrandt U, Schmelzer E, Bothe H., Physiol Plant 115(1), 2002
PMID: 12010476
A phosphate transporter expressed in arbuscule-containing cells in potato.
Rausch C, Daram P, Brunner S, Jansa J, Laloi M, Leggewie G, Amrhein N, Bucher M., Nature 414(6862), 2001
PMID: 11719809
Appressorium formation by AM fungi on isolated cell walls of carrot roots.
Nagahashi G, Douds DDJr., New Phytol. 136(2), 1997
PMID: IND20701640
The TIGR gene indices: reconstruction and representation of expressed gene sequences.
Quackenbush J, Liang F, Holt I, Pertea G, Upton J., Nucleic Acids Res. 28(1), 2000
PMID: 10592205
An optimized protocol for analysis of EST sequences.
Liang F, Holt I, Pertea G, Karamycheva S, Salzberg SL, Quackenbush J., Nucleic Acids Res. 28(18), 2000
PMID: 10982889
The comparison of gene expression from multiple cDNA libraries.
Stekel DJ, Git Y, Falciani F., Genome Res. 10(12), 2000
PMID: 11116099
Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis.
Paszkowski U, Kroken S, Roux C, Briggs SP., Proc. Natl. Acad. Sci. U.S.A. 99(20), 2002
PMID: 12271140
New plant promoter and enhancer testing vectors.
Szabados L, Charrier B, Kondorosi A, Bruijn FJde, Ratet P., Mol. Breed. 1(4), 1995
PMID: IND21967687
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 16134889
PubMed | Europe PMC

Suchen in

Google Scholar