Learning visuomotor transformations for gaze-control and grasping

Hoffmann H, Schenck W, Möller R (2005)
Biological Cybernetics 93(2): 119-130.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Abstract / Bemerkung
For reaching to and grasping of an object, visual information about the object must be transformed into motor or postural commands for the arm and hand. In this paper, we present a robot model for visually guided reaching and grasping. The model mimics two alternative processing pathways for grasping, which are also likely to coexist in the human brain. The first pathway directly uses the retinal activation to encode the target position. In the second pathway, a saccade controller makes the eyes (cameras) focus on the target, and the gaze direction is used instead as positional input. For both pathways, an arm controller transforms information on the target's position and orientation into an arm posture suitable for grasping. For the training of the saccade controller, we suggest a novel staged learning method which does not require a teacher that provides the necessary motor commands. The arm controller uses unsupervised learning: it is based on a density model of the sensor and the motor data. Using this density, a mapping is achieved by completing a partially given sensorimotor pattern. The controller can cope with the ambiguity in having a set of redundant arm postures for a given target. The combined model of saccade and arm controller was able to fixate and grasp an elongated object with arbitrary orientation and at arbitrary position on a table in 94% of trials.
Erscheinungsjahr
2005
Zeitschriftentitel
Biological Cybernetics
Band
93
Ausgabe
2
Seite(n)
119-130
ISSN
0340-1200
eISSN
1432-0770
Page URI
https://pub.uni-bielefeld.de/record/1602490

Zitieren

Hoffmann H, Schenck W, Möller R. Learning visuomotor transformations for gaze-control and grasping. Biological Cybernetics. 2005;93(2):119-130.
Hoffmann, H., Schenck, W., & Möller, R. (2005). Learning visuomotor transformations for gaze-control and grasping. Biological Cybernetics, 93(2), 119-130. https://doi.org/10.1007/s00422-005-0575-x
Hoffmann, H, Schenck, Wolfram, and Möller, Ralf. 2005. “Learning visuomotor transformations for gaze-control and grasping”. Biological Cybernetics 93 (2): 119-130.
Hoffmann, H., Schenck, W., and Möller, R. (2005). Learning visuomotor transformations for gaze-control and grasping. Biological Cybernetics 93, 119-130.
Hoffmann, H., Schenck, W., & Möller, R., 2005. Learning visuomotor transformations for gaze-control and grasping. Biological Cybernetics, 93(2), p 119-130.
H. Hoffmann, W. Schenck, and R. Möller, “Learning visuomotor transformations for gaze-control and grasping”, Biological Cybernetics, vol. 93, 2005, pp. 119-130.
Hoffmann, H., Schenck, W., Möller, R.: Learning visuomotor transformations for gaze-control and grasping. Biological Cybernetics. 93, 119-130 (2005).
Hoffmann, H, Schenck, Wolfram, and Möller, Ralf. “Learning visuomotor transformations for gaze-control and grasping”. Biological Cybernetics 93.2 (2005): 119-130.

3 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Computational Models for Neuromuscular Function.
Valero-Cuevas FJ, Hoffmann H, Kurse MU, Kutch JJ, Theodorou EA., IEEE Rev Biomed Eng 2(), 2009
PMID: 21687779
Perception through visuomotor anticipation in a mobile robot.
Hoffmann H., Neural Netw 20(1), 2007
PMID: 17010571

53 References

Daten bereitgestellt von Europe PubMed Central.

Reach plans in eye-centered coordinates.
Batista AP, Buneo CA, Snyder LH, Andersen RA., Science 285(5425), 1999
PMID: 10398603
Direct visuomotor transformations for reaching.
Buneo CA, Jarvis MR, Batista AP, Andersen RA., Nature 416(6881), 2002
PMID: 11948351
Magnetic misreaching.
Carey DP, Coleman RJ, Della Sala S., Cortex 33(4), 1997
PMID: 9444466

DP, 2002

R, Rob Auton Syst 19(), 1997
Visual-motor transformations required for accurate and kinematically correct saccades.
Crawford JD, Guitton D., J. Neurophysiol. 78(3), 1997
PMID: 9310435
Spatial transformations for eye-hand coordination.
Crawford JD, Medendorp WP, Marotta JJ., J. Neurophysiol. 92(1), 2004
PMID: 15212434

H, Biol Cybern 69(), 1993

KI, 1996

C, Auton Robots 9(), 2000

O, Mach Learn 31(), 1998
Complex movements evoked by microstimulation of precentral cortex.
Graziano MS, Taylor CS, Moore T., Neuron 34(5), 2002
PMID: 12062029
Modeling the manifolds of images of handwritten digits.
Hinton GE, Dayan P, Revow M., IEEE Trans Neural Netw 8(1), 1997
PMID: 18255611

H, 2003

JJ, Proc Nat Acad Sci USA 79(), 1982

MI, Cogn Sci 16(), 1992

M, 1990
A hierarchical neural-network model for control and learning of voluntary movement.
Kawato M, Furukawa K, Suzuki R., Biol Cybern 57(3), 1987
PMID: 3676355

M, Neural Netw 4(), 1990
Visuo-motor transformations for arm reaching.
Lacquaniti F, Caminiti R., Eur. J. Neurosci. 10(1), 1998
PMID: 9753127

PE, J Physiol 97(), 2003

RJ, 1999
;Neural-gas' network for vector quantization and its application to time-series prediction.
Martinetz TM, Berkovich SG, Schulten KJ., IEEE Trans Neural Netw 4(4), 1993
PMID: 18267757

J, Neurocomputing 61(), 2004

R, Neurocomputing 62(), 2004

JR, Cogn Sci 17(), 1993
Robust recursive least squares learning algorithm for principal component analysis.
Shan O, Bao Z, Liao GS., IEEE Trans Neural Netw 11(1), 2000
PMID: 18249753
Infant grasp learning: a computational model.
Oztop E, Bradley NS, Arbib MA., Exp Brain Res 158(4), 2004
PMID: 15221160

AUTHOR UNKNOWN, 0

HJ, 1993

HJ, Neural Netw 2(), 1989
Extraocular muscle proprioceptors and proprioception.
Ruskell GL., Prog Retin Eye Res 18(3), 1999
PMID: 10192514

M, Mach Learn 23(), 1996

W, 2004

AUTHOR UNKNOWN, 0
Coordinate transformations for eye and arm movements in the brain.
Snyder LH., Curr. Opin. Neurobiol. 10(6), 2000
PMID: 11240284
Saccade-related activity in the parietal reach region.
Snyder LH, Batista AP, Andersen RA., J. Neurophysiol. 83(2), 2000
PMID: 10669521

DL, Ann Rev Neurosci 13(), 1990

U, Biol Cybern 79(), 1998
Mixtures of probabilistic principal component analyzers.
Tipping ME, Bishop CM., Neural Comput 11(2), 1999
PMID: 9950739
Feature-based attention influences motion processing gain in macaque visual cortex.
Treue S, Martinez Trujillo JC., Nature 399(6736), 1999
PMID: 10376597

AUTHOR UNKNOWN, 0

Y, Neural Netw 8(), 1995

AUTHOR UNKNOWN, 0
Are arm trajectories planned in kinematic or dynamic coordinates? An adaptation study.
Wolpert DM, Ghahramani Z, Jordan MI., Exp Brain Res 103(3), 1995
PMID: 7789452
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 16028074
PubMed | Europe PMC

Suchen in

Google Scholar