Machine learning approaches for phenotype-genotype mapping: predicting heterozygous mutations in the CYP21B gene from steroid profiles

Prank K, Schulze E, Eckert O, Nattkemper TW, Bettendorf M, Maser-Gluth C, Sejnowski TJ, Grote A, Penner E, von zur Muhlen A, Brabant G (2005)
EUROPEAN JOURNAL OF ENDOCRINOLOGY 153(2): 301-305.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ; ; ; ; ; ; ; ;
Abstract / Bemerkung
Objective: Non-linear relations between multiple biochemical parameters are the basis for the diagnosis of many diseases. Traditional linear analytical methods are not reliable predictors. Novel nonlinear techniques are increasingly used to improve the diagnostic accuracy of automated data interpretation. This has been exemplified in particular for the classification and diagnostic prediction of cancers based on expression profiling data. Our objective was to predict the genotype from complex biochemical data by comparing the performance of experienced clinicians to traditional linear analysis, and to novel non-linear analytical methods. Design and methods: As a model, we used a well-defined set of interconnected data consisting of unstimulated serum levels of steroid intermediates assessed in 54 subjects heterozygous for a mutation of the 21-hydroxylase gene (CYP21B) and in 43 healthy controls. Results: The genetic alteration was predicted from the pattern of steroid levels with an accuracy of 39% by clinicians and of 64% by linear analysis. In contrast, non-linear analysis, such as self-organizing artificial neural networks, support vector machines, and nearest neighbour classifiers, allowed for higher accuracy up to 83%. Conclusions: The successful application of these non-linear adaptive methods to capture specific biochemical problems may have generalized implications for biochemical testing in many areas. Nonlinear analytical techniques such as neural networks, support vector machines, and nearest neighbour classifiers may serve as an important adjunct to the decision process of a human investigator not ' trained ' in a specific complex clinical or laboratory setting and may aid them to classify the problem more directly.
Erscheinungsjahr
Zeitschriftentitel
EUROPEAN JOURNAL OF ENDOCRINOLOGY
Band
153
Ausgabe
2
Seite(n)
301-305
ISSN
eISSN
PUB-ID

Zitieren

Prank K, Schulze E, Eckert O, et al. Machine learning approaches for phenotype-genotype mapping: predicting heterozygous mutations in the CYP21B gene from steroid profiles. EUROPEAN JOURNAL OF ENDOCRINOLOGY. 2005;153(2):301-305.
Prank, K., Schulze, E., Eckert, O., Nattkemper, T. W., Bettendorf, M., Maser-Gluth, C., Sejnowski, T. J., et al. (2005). Machine learning approaches for phenotype-genotype mapping: predicting heterozygous mutations in the CYP21B gene from steroid profiles. EUROPEAN JOURNAL OF ENDOCRINOLOGY, 153(2), 301-305. doi:10.1530/eje.1.01957
Prank, K., Schulze, E., Eckert, O., Nattkemper, T. W., Bettendorf, M., Maser-Gluth, C., Sejnowski, T. J., Grote, A., Penner, E., von zur Muhlen, A., et al. (2005). Machine learning approaches for phenotype-genotype mapping: predicting heterozygous mutations in the CYP21B gene from steroid profiles. EUROPEAN JOURNAL OF ENDOCRINOLOGY 153, 301-305.
Prank, K., et al., 2005. Machine learning approaches for phenotype-genotype mapping: predicting heterozygous mutations in the CYP21B gene from steroid profiles. EUROPEAN JOURNAL OF ENDOCRINOLOGY, 153(2), p 301-305.
K. Prank, et al., “Machine learning approaches for phenotype-genotype mapping: predicting heterozygous mutations in the CYP21B gene from steroid profiles”, EUROPEAN JOURNAL OF ENDOCRINOLOGY, vol. 153, 2005, pp. 301-305.
Prank, K., Schulze, E., Eckert, O., Nattkemper, T.W., Bettendorf, M., Maser-Gluth, C., Sejnowski, T.J., Grote, A., Penner, E., von zur Muhlen, A., Brabant, G.: Machine learning approaches for phenotype-genotype mapping: predicting heterozygous mutations in the CYP21B gene from steroid profiles. EUROPEAN JOURNAL OF ENDOCRINOLOGY. 153, 301-305 (2005).
Prank, K, Schulze, E, Eckert, O, Nattkemper, Tim Wilhelm, Bettendorf, M, Maser-Gluth, C, Sejnowski, TJ, Grote, A, Penner, E, von zur Muhlen, A, and Brabant, G. “Machine learning approaches for phenotype-genotype mapping: predicting heterozygous mutations in the CYP21B gene from steroid profiles”. EUROPEAN JOURNAL OF ENDOCRINOLOGY 153.2 (2005): 301-305.

2 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Markov mean properties for cell death-related protein classification.
Fernandez-Lozano C, Gestal M, González-Díaz H, Dorado J, Pazos A, Munteanu CR., J Theor Biol 349(), 2014
PMID: 24491256
Improving enzyme regulatory protein classification by means of SVM-RFE feature selection.
Fernandez-Lozano C, Fernández-Blanco E, Dave K, Pedreira N, Gestal M, Dorado J, Munteanu CR., Mol Biosyst 10(5), 2014
PMID: 24556806

30 References

Daten bereitgestellt von Europe PubMed Central.

Congenital adrenal hyperplasia.
Speiser PW, White PC., N. Engl. J. Med. 349(8), 2003
PMID: 12930931
Decreased clearance of prednisolone, a factor in the development of corticosteroid side effects.
Kozower M, Veatch L, Kaplan MM., J. Clin. Endocrinol. Metab. 38(3), 1974
PMID: 4815171
21-hydroxylase deficiency congenital adrenal hyperplasia.
New MI., J. Steroid Biochem. Mol. Biol. 48(1), 1994
PMID: 8136301
The application of a new highly-sensitive radioimmunoassay for plasma 21-deoxycortisol to the detection of steroid-21-hydroxylase deficiency.
Fiet J, Villette JM, Galons H, Boudou P, Burthier JM, Hardy N, Soliman H, Julien R, Vexiau P, Gourmelen M., Ann. Clin. Biochem. 31 ( Pt 1)(), 1994
PMID: 8154853
Exhaustive screening of the 21-hydroxylase gene in a population of hyperandrogenic women.
Blanche H, Vexiau P, Clauin S, Le Gall I, Fiet J, Mornet E, Dausset J, Bellanne-Chantelot C., Hum. Genet. 101(1), 1997
PMID: 9385370
Normal values for a short-time ACTH intravenous and intramuscular stimulation test in women in the reproductive age.
Grunwald K, Rabe T, Urbancsek J, Runnebaum B, Vecsei P., Gynecol. Endocrinol. 4(4), 1990
PMID: 1964539
Divergence between genotype and phenotype in relatives of patients with the intron 2 mutation of steroid-21-hydroxylase.
Schulze E, Scharer G, Rogatzki A, Priebe L, Lewicka S, Bettendorf M, Hoepffner W, Heinrich UE, Schwabe U., Endocr. Res. 21(1-2), 1995
PMID: 7588399
Identification of non-amplifying CYP21 genes when using PCR-based diagnosis of 21-hydroxylase deficiency in congenital adrenal hyperplasia (CAH) affected pedigrees.
Day DJ, Speiser PW, Schulze E, Bettendorf M, Fitness J, Barany F, White PC., Hum. Mol. Genet. 5(12), 1996
PMID: 8968761
Detection of CAH heterozygotes.
Azziz R., Fertil. Steril. 68(1), 1997
PMID: 9207613
Nearest neighbour pattern classification
Cover TM, Hart PE., 1967

Bishop CM., 1995

Tarassenko L., 1998
;Neural-gas' network for vector quantization and its application to time-series prediction.
Martinetz TM, Berkovich SG, Schulten KJ., IEEE Trans Neural Netw 4(4), 1993
PMID: 18267757
Topology representing networks
Martinetz TM, Schulten KJ., 1994
Self-organized formation of topographically correct feature maps
Kohonen T., 1982
Analysis of a simple self-organizing process
Kohonen T., 1982
Kernel principal component analysis
Schoelkopf B, Smola AJ, Mueller K-R., 1999
Fisher discriminant analysis with kernels
Mika S, Raetsch G, Weston J, Schoelkopf B, Mueller K-R., 1999

Vapnik V., 1995
Fast training of support vector machines using sequential minimal optimization
Platt J., 1998

Keerthi SS, Shevade SK, Bhattacharyya C, Murthy KRK., 1999
Introduction to neural networks.
Cross SS, Harrison RF, Kennedy RL., Lancet 346(8982), 1995
PMID: 7564791
Epileptic seizures can be anticipated by non-linear analysis.
Martinerie J, Adam C, Le Van Quyen M, Baulac M, Clemenceau S, Renault B, Varela FJ., Nat. Med. 4(10), 1998
PMID: 9771751
Steroid 21-hydroxylase deficiency: genotype may not predict phenotype.
Wilson RC, Mercado AB, Cheng KC, New MI., J. Clin. Endocrinol. Metab. 80(8), 1995
PMID: 7629224
Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks.
Khan J, Wei JS, Ringner M, Saal LH, Ladanyi M, Westermann F, Berthold F, Schwab M, Antonescu CR, Peterson C, Meltzer PS., Nat. Med. 7(6), 2001
PMID: 11385503
Delineation of prognostic biomarkers in prostate cancer.
Dhanasekaran SM, Barrette TR, Ghosh D, Shah R, Varambally S, Kurachi K, Pienta KJ, Rubin MA, Chinnaiyan AM., Nature 412(6849), 2001
PMID: 11518967

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 16061837
PubMed | Europe PMC

Suchen in

Google Scholar