An adaptive tissue characterization network for model-free visualization of dynamic contrast-enhanced magnetic resonance image data

Twellmann T, Lichte O, Nattkemper TW (2005)
IEEE TRANSACTIONS ON MEDICAL IMAGING 24(10): 1256-1266.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Abstract / Bemerkung
Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) has become an important source of information to aid cancer diagnosis. Nevertheless, due to the multi-temporal nature of the three-dimensional volume data obtained from DCE-MRI, evaluation of the image data is a challenging task and tools are required to support the human expert. We investigate an approach for automatic localization and characterization of suspicious lesions in DCE-MRI data. It applies an artificial neural network (ANN) architecture which combines unsupervised and supervised techniques for voxel-by-voxel classification of temporal kinetic signals. The algorithm is easy to implement, allows for fast training and application even for huge data sets and can be directly used to augment the display of DCE-MRI data. To demonstrate that the system provides a reasonable assessment of kinetic signals, the outcome is compared with the results obtained from the model-based three-time-points (3TP) technique which represents a clinical standard protocol for analysing breast cancer lesions. The evaluation based on the DCE-MRI data of 12 cases indicates that, although the ANN is trained with imprecisely labeled data, the approach leads to an outcome conforming with 3TP without presupposing an explicit model of the underlying physiological process.
Stichworte
dynamic contrast-enhanced magnetic resonance; visualization; imaging; artificial neural network
Erscheinungsjahr
2005
Zeitschriftentitel
IEEE TRANSACTIONS ON MEDICAL IMAGING
Band
24
Ausgabe
10
Seite(n)
1256-1266
ISSN
0278-0062
Page URI
https://pub.uni-bielefeld.de/record/1602177

Zitieren

Twellmann T, Lichte O, Nattkemper TW. An adaptive tissue characterization network for model-free visualization of dynamic contrast-enhanced magnetic resonance image data. IEEE TRANSACTIONS ON MEDICAL IMAGING. 2005;24(10):1256-1266.
Twellmann, T., Lichte, O., & Nattkemper, T. W. (2005). An adaptive tissue characterization network for model-free visualization of dynamic contrast-enhanced magnetic resonance image data. IEEE TRANSACTIONS ON MEDICAL IMAGING, 24(10), 1256-1266. https://doi.org/10.1109/TMI.2005.854517
Twellmann, Thorsten, Lichte, O, and Nattkemper, Tim Wilhelm. 2005. “An adaptive tissue characterization network for model-free visualization of dynamic contrast-enhanced magnetic resonance image data”. IEEE TRANSACTIONS ON MEDICAL IMAGING 24 (10): 1256-1266.
Twellmann, T., Lichte, O., and Nattkemper, T. W. (2005). An adaptive tissue characterization network for model-free visualization of dynamic contrast-enhanced magnetic resonance image data. IEEE TRANSACTIONS ON MEDICAL IMAGING 24, 1256-1266.
Twellmann, T., Lichte, O., & Nattkemper, T.W., 2005. An adaptive tissue characterization network for model-free visualization of dynamic contrast-enhanced magnetic resonance image data. IEEE TRANSACTIONS ON MEDICAL IMAGING, 24(10), p 1256-1266.
T. Twellmann, O. Lichte, and T.W. Nattkemper, “An adaptive tissue characterization network for model-free visualization of dynamic contrast-enhanced magnetic resonance image data”, IEEE TRANSACTIONS ON MEDICAL IMAGING, vol. 24, 2005, pp. 1256-1266.
Twellmann, T., Lichte, O., Nattkemper, T.W.: An adaptive tissue characterization network for model-free visualization of dynamic contrast-enhanced magnetic resonance image data. IEEE TRANSACTIONS ON MEDICAL IMAGING. 24, 1256-1266 (2005).
Twellmann, Thorsten, Lichte, O, and Nattkemper, Tim Wilhelm. “An adaptive tissue characterization network for model-free visualization of dynamic contrast-enhanced magnetic resonance image data”. IEEE TRANSACTIONS ON MEDICAL IMAGING 24.10 (2005): 1256-1266.

27 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Automatic segmentation and classification of breast lesions through identification of informative multiparametric PET/MRI features.
Vogl WD, Pinker K, Helbich TH, Bickel H, Grabner G, Bogner W, Gruber S, Bago-Horvath Z, Dubsky P, Langs G., Eur Radiol Exp 3(1), 2019
PMID: 31030291
Automatic outer and inner breast tissue segmentation using multi-parametric MRI images of breast tumor patients.
Thakran S, Chatterjee S, Singhal M, Gupta RK, Singh A., PLoS One 13(1), 2018
PMID: 29320532
Clinical applicability and relevance of fibroglandular tissue segmentation on routine T1 weighted breast MRI.
Pujara AC, Mikheev A, Rusinek H, Rallapalli H, Walczyk J, Gao Y, Chhor C, Pysarenko K, Babb JS, Melsaether AN., Clin Imaging 42(), 2017
PMID: 27951458
Localized-atlas-based segmentation of breast MRI in a decision-making framework.
Fooladivanda A, Shokouhi SB, Ahmadinejad N., Australas Phys Eng Sci Med 40(1), 2017
PMID: 28116639
Breast MRI segmentation for density estimation: Do different methods give the same results and how much do differences matter?
Doran SJ, Hipwell JH, Denholm R, Eiben B, Busana M, Hawkes DJ, Leach MO, Silva IDS., Med Phys 44(9), 2017
PMID: 28477346
Automated breast-region segmentation in the axial breast MR images.
Milenković J, Chambers O, Marolt Mušič M, Tasič JF., Comput Biol Med 62(), 2015
PMID: 25912987
Imaging Breast Density: Established and Emerging Modalities.
Chen JH, Gulsen G, Su MY., Transl Oncol 8(6), 2015
PMID: 26692524
Breast cancer detection from MR images through an auto-probing discrete Fourier transform system.
Sim KS, Chia FK, Nia ME, Tso CP, Chong AK, Abbas SF, Chong SS., Comput Biol Med 49(), 2014
PMID: 24736203
Automated chest wall line detection for whole-breast segmentation in sagittal breast MR images.
Wu S, Weinstein SP, Conant EF, Schnall MD, Kontos D., Med Phys 40(4), 2013
PMID: 23556914
3D lacunarity in multifractal analysis of breast tumor lesions in dynamic contrast-enhanced magnetic resonance imaging.
Soares F, Janela F, Pereira M, Seabra J, Freire MM., IEEE Trans Image Process 22(11), 2013
PMID: 24057004
Quantitative analysis of dynamic contrast-enhanced MR images based on Bayesian P-splines.
Schmid VJ, Whitcher B, Padhani AR, Yang GZ., IEEE Trans Med Imaging 28(6), 2009
PMID: 19272996
Survey of the visual exploration and analysis of perfusion data.
Preim B, Oeltze S, Mlejnek M, Gröeller E, Hennemuth A, Behrens S., IEEE Trans Vis Comput Graph 15(2), 2009
PMID: 19147886
Estimating kinetic parameter maps from dynamic contrast-enhanced MRI using spatial prior knowledge.
Kelm BM, Menze BH, Nix O, Zechmann CM, Hamprecht FA., IEEE Trans Med Imaging 28(10), 2009
PMID: 19369150
Breast MR segmentation and lesion detection with cellular neural networks and 3D template matching.
Ertaş G, Gülçür HO, Osman O, Uçan ON, Tunaci M, Dursun M., Comput Biol Med 38(1), 2008
PMID: 17854795
Model-Free Visualization of Suspicious Lesions in Breast MRI Based on Supervised and Unsupervised Learning.
Twellmann T, Meyer-Baese A, Lange O, Foo S, Nattkemper TW., Eng Appl Artif Intell 21(2), 2008
PMID: 19255616
Visual MRI: merging information visualization and non-parametric clustering techniques for MRI dataset analysis.
Castellani U, Cristani M, Combi C, Murino V, Sbarbati A, Marzola P., Artif Intell Med 44(3), 2008
PMID: 18775655
Malignant-lesion segmentation using 4D co-occurrence texture analysis applied to dynamic contrast-enhanced magnetic resonance breast image data.
Woods BJ, Clymer BD, Kurc T, Heverhagen JT, Stevens R, Orsdemir A, Bulan O, Knopp MV., J Magn Reson Imaging 25(3), 2007
PMID: 17279534
Computer assistance for MR based diagnosis of breast cancer: present and future challenges.
Behrens S, Laue H, Althaus M, Boehler T, Kuemmerlen B, Hahn HK, Peitgen HO., Comput Med Imaging Graph 31(4-5), 2007
PMID: 17369019
Interactive visual analysis of perfusion data.
Oeltze S, Doleisch H, Hauser H, Muigg P, Preim B., IEEE Trans Vis Comput Graph 13(6), 2007
PMID: 17968089

39 References

Daten bereitgestellt von Europe PubMed Central.

Textural analysis of contrast-enhanced MR images of the breast.
Gibbs P, Turnbull LW., Magn Reson Med 50(1), 2003
PMID: 12815683

AUTHOR UNKNOWN, 0

bishop, Neural Networks for Pattern Recognition (), 1995
;Neural-gas' network for vector quantization and its application to time-series prediction.
Martinetz TM, Berkovich SG, Schulten KJ., IEEE Trans Neural Netw 4(4), 1993
PMID: 18267757
A neural classifier enabling high-throughput topological analysis of lymphocytes in tissue sections.
Nattkemper TW, Ritter HJ, Schubert W., IEEE Trans Inf Technol Biomed 5(2), 2001
PMID: 11420992
learning with the self-organizing map
ritter, Artificial Neural Networks (), 1991
Breast fibroadenoma: mapping of pathophysiologic features with three-time-point, contrast-enhanced MR imaging--pilot study.
Weinstein D, Strano S, Cohen P, Fields S, Gomori JM, Degani H., Radiology 210(1), 1999
PMID: 9885614
Modeling tracer kinetics in dynamic Gd-DTPA MR imaging.
Tofts PS., J Magn Reson Imaging 7(1), 1997
PMID: 9039598
clinical testing of high-spatial-resolution parametric contrast-enhanced mr imaging of the breast
kelcz, Am J Radiol 179(), 2001
morpho-functional visualization of dynamic mr-mammography
engelmeier, MEDINFO 2004 (), 2004
Accurate estimation of pharmacokinetic contrast-enhanced dynamic MRI parameters of the prostate.
Huisman HJ, Engelbrecht MR, Barentsz JO., J Magn Reson Imaging 13(4), 2001
PMID: 11276106
computer-aided diagnosis in breast mri based on unsupervised clustering techniques
meyer-baese, Proc SPIE (Intelligent Computing Theory and Applications II) 5421(), 2004

AUTHOR UNKNOWN, 0
Benign and malignant breast lesions: diagnosis with multiparametric MR imaging.
Jacobs MA, Barker PB, Bluemke DA, Maranto C, Arnold C, Herskovits EH, Bhujwalla Z., Radiology 229(1), 2003
PMID: 14519877

AUTHOR UNKNOWN, 0
Fast dynamic gadolinium-enhanced MR imaging of urinary bladder and prostate cancer.
Barentsz JO, Engelbrecht M, Jager GJ, Witjes JA, de LaRosette J, van Der Sanden BP, Huisman HJ, Heerschap A., J Magn Reson Imaging 10(3), 1999
PMID: 10508289

fawcett, ROC Graphs Notes and Practical Considerations for Researchers (), 2003
Dynamic breast MR imaging: are signal intensity time course data useful for differential diagnosis of enhancing lesions?
Kuhl CK, Mielcareck P, Klaschik S, Leutner C, Wardelmann E, Gieseke J, Schild HH., Radiology 211(1), 1999
PMID: 10189459

AUTHOR UNKNOWN, 0
Focal liver lesions: characterization with nonenhanced and dynamic contrast material-enhanced MR imaging.
Hamm B, Thoeni RF, Gould RG, Bernardino ME, Luning M, Saini S, Mahfouz AE, Taupitz M, Wolf KJ., Radiology 190(2), 1994
PMID: 8284392
MRI of the breast.
Rankin SC., Br J Radiol 73(872), 2000
PMID: 11026854
Dynamic MR imaging of the breast. Analysis of kinetic and morphologic diagnostic criteria.
Szabo BK, Aspelin P, Wiberg MK, Bone B., Acta Radiol 44(4), 2003
PMID: 12846687
Challenges to interpretation of breast MRI.
Kinkel K, Hylton NM., J Magn Reson Imaging 13(6), 2001
PMID: 11382939
Dynamic magnetic resonance imaging of tumor perfusion. Approaches and biomedical challenges.
Collins DJ, Padhani AR., IEEE Eng Med Biol Mag 23(5), 2004
PMID: 15565801
visualization of breast tumour dce-mri data using lle
varini, Proc Medical Image Understanding and Analysis (MIUA) (), 2004
Classification of signal-time curves from dynamic MR mammography by neural networks.
Lucht RE, Knopp MV, Brix G., Magn Reson Imaging 19(1), 2001
PMID: 11295347
detection of suspicious lesions in dynamic contrast-enhanced mri data
twellmann, Proc EMBC 2004 26th Annu Int Conf IEEE Engineering in Medicine and Biology Society 1(), 2004
Neural network-based segmentation of dynamic MR mammographic images.
Lucht R, Delorme S, Brix G., Magn Reson Imaging 20(2), 2002
PMID: 12034335
receiver operating characteristic methodology: the state of the art
hanley, Crit Rev Diagnostic Imag 29(), 1989

AUTHOR UNKNOWN, 0
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 16229413
PubMed | Europe PMC

Suchen in

Google Scholar