The Arabidopsis genome encodes structurally and functionally diverse HMGB-type proteins

Grasser M, Lentz A, Lichota J, Merkle T, Grasser KD (2006)
Journal of Molecular Biology 358(3): 654-664.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Grasser, M.; Lentz, A.; Lichota, J.; Merkle, ThomasUniBi; Grasser, K. D.
Abstract / Bemerkung
The high mobility group (HMG) proteins of the HMGB family are chromatin-associated proteins that act as architectural factors in nucleoprotein structures, which regulate DNA-dependent processes including transcription and recombination. In addition to the previously identified HMGB1-HMGB6 proteins, the Arabidopsis genome encodes at least two other candidate family members (encoded by the loci At2g34450 and At5g23405) having the typical overall structure of a central domain displaying sequence similarity to HMG-box DNA binding domains, which is flanked by basic N-terminal and acidic C-terminal regions. Subcellular localisation experiments demonstrate that the At2g34450 protein is a nuclear protein, whereas the At5g23405 protein is found mainly in the cytoplasm. In line with this finding, At5g23405 displays specific interaction with the nuclear export receptor AtXPO1a. According to CD measurements, the HMG-box domains of both proteins have an alpha-helical structure. The HMG-box domain of At2g34450 interacts with linear DNA and binds structure-specifically to DNA minicircles, whereas the HMG-box domain of At5g23405 does not interact with DNA at all. In ligation experiments with short DNA fragments, the At2g34450 HMG-box domain can facilitate the formation of linear oligomers, but it does not promote the formation of DNA minicircles. Therefore, the At2g34450 protein shares several features with HMGB proteins, whereas the At5g23405 protein has different characteristics. Despite the presence of a region with similarity to the nucleosome-binding domain typical of HMGN proteins, At2g34450 does not bind nucleosome particles. In summary, our data demonstrate (i) that plant HMGB-type proteins are functionally variable and (ii) that it is difficult to predict HMG-box function solely based on sequence similarity. (c) 2006 Elsevier Ltd. All rights reserved.
Stichworte
HMG-box domain; high mobility group proteins; DNA ligation assay; interaction; subcellular localisation; structure-specific DNA
Erscheinungsjahr
2006
Zeitschriftentitel
Journal of Molecular Biology
Band
358
Ausgabe
3
Seite(n)
654-664
ISSN
0022-2836
Page URI
https://pub.uni-bielefeld.de/record/1599537

Zitieren

Grasser M, Lentz A, Lichota J, Merkle T, Grasser KD. The Arabidopsis genome encodes structurally and functionally diverse HMGB-type proteins. Journal of Molecular Biology. 2006;358(3):654-664.
Grasser, M., Lentz, A., Lichota, J., Merkle, T., & Grasser, K. D. (2006). The Arabidopsis genome encodes structurally and functionally diverse HMGB-type proteins. Journal of Molecular Biology, 358(3), 654-664. https://doi.org/10.1016/j.jmb.2006.02.068
Grasser, M., Lentz, A., Lichota, J., Merkle, Thomas, and Grasser, K. D. 2006. “The Arabidopsis genome encodes structurally and functionally diverse HMGB-type proteins”. Journal of Molecular Biology 358 (3): 654-664.
Grasser, M., Lentz, A., Lichota, J., Merkle, T., and Grasser, K. D. (2006). The Arabidopsis genome encodes structurally and functionally diverse HMGB-type proteins. Journal of Molecular Biology 358, 654-664.
Grasser, M., et al., 2006. The Arabidopsis genome encodes structurally and functionally diverse HMGB-type proteins. Journal of Molecular Biology, 358(3), p 654-664.
M. Grasser, et al., “The Arabidopsis genome encodes structurally and functionally diverse HMGB-type proteins”, Journal of Molecular Biology, vol. 358, 2006, pp. 654-664.
Grasser, M., Lentz, A., Lichota, J., Merkle, T., Grasser, K.D.: The Arabidopsis genome encodes structurally and functionally diverse HMGB-type proteins. Journal of Molecular Biology. 358, 654-664 (2006).
Grasser, M., Lentz, A., Lichota, J., Merkle, Thomas, and Grasser, K. D. “The Arabidopsis genome encodes structurally and functionally diverse HMGB-type proteins”. Journal of Molecular Biology 358.3 (2006): 654-664.

21 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Arabidopsis DEAD-box RNA helicase UAP56 interacts with both RNA and DNA as well as with mRNA export factors.
Kammel C, Thomaier M, Sørensen BB, Schubert T, Längst G, Grasser M, Grasser KD., PLoS One 8(3), 2013
PMID: 23555998
Nucleo-cytoplasmic transport of proteins and RNA in plants.
Merkle T., Plant Cell Rep 30(2), 2011
PMID: 20960203
Unexpected mobility of plant chromatin-associated HMGB proteins.
Merkle T, Grasser KD., Plant Signal Behav 6(6), 2011
PMID: 21543902
The plant-specific family of DNA-binding proteins containing three HMG-box domains interacts with mitotic and meiotic chromosomes.
Pedersen DS, Coppens F, Ma L, Antosch M, Marktl B, Merkle T, Beemster GT, Houben A, Grasser KD., New Phytol 192(3), 2011
PMID: 21781122
Nucleocytoplasmic distribution of the Arabidopsis chromatin-associated HMGB2/3 and HMGB4 proteins.
Pedersen DS, Merkle T, Marktl B, Lildballe DL, Antosch M, Bergmann T, Tönsing K, Anselmetti D, Grasser KD., Plant Physiol 154(4), 2010
PMID: 20940346
Chromosomal high mobility group (HMG) proteins of the HMGB-type occurring in the moss Physcomitrella patens.
Kiilerich B, Stemmer C, Merkle T, Launholt D, Gorr G, Grasser KD., Gene 407(1-2), 2008
PMID: 17980517
Physcomitrella HMGA-type proteins display structural differences compared to their higher plant counterparts.
Lyngaard C, Stemmer C, Stensballe A, Graf M, Gorr G, Decker E, Grasser KD., Biochem Biophys Res Commun 374(4), 2008
PMID: 18662672
The expression level of the chromatin-associated HMGB1 protein influences growth, stress tolerance, and transcriptome in Arabidopsis.
Lildballe DL, Pedersen DS, Kalamajka R, Emmersen J, Houben A, Grasser KD., J Mol Biol 384(1), 2008
PMID: 18822296
Overlapping expression patterns among the genes encoding Arabidopsis chromosomal high mobility group (HMG) proteins.
Launholt D, Grønlund JT, Nielsen HK, Grasser KD., FEBS Lett 581(6), 2007
PMID: 17316617
Analysis of the subcellular localization, function, and proteolytic control of the Arabidopsis cyclin-dependent kinase inhibitor ICK1/KRP1.
Jakoby MJ, Weinl C, Pusch S, Kuijt SJ, Merkle T, Dissmeyer N, Schnittger A., Plant Physiol 141(4), 2006
PMID: 16766674

55 References

Daten bereitgestellt von Europe PubMed Central.

HMG proteins: dynamic players in gene regulation and differentiation.
Bianchi ME, Agresti A., Curr. Opin. Genet. Dev. 15(5), 2005
PMID: 16102963
HMG1 and 2, and related 'architectural' DNA-binding proteins.
Thomas JO, Travers AA., Trends Biochem. Sci. 26(3), 2001
PMID: 11246022
HMGB proteins and gene expression.
Agresti A, Bianchi ME., Curr. Opin. Genet. Dev. 13(2), 2003
PMID: 12672494
Recognition of distorted DNA structures by HMG domains.
Travers A., Curr. Opin. Struct. Biol. 10(1), 2000
PMID: 10679469
Binding to four-way junction DNA: a common property of architectural proteins?
Zlatanova J, van Holde K., FASEB J. 12(6), 1998
PMID: 9535214
High mobility group chromosomal proteins bind to AT-rich tracts flanking plant genes.
Pedersen TJ, Arwood LJ, Spiker S, Guiltinan MJ, Thompson WF., Plant Mol. Biol. 16(1), 1991
PMID: 1840685
High-mobility group chromosomal proteins of wheat.
Spiker S., J. Biol. Chem. 259(19), 1984
PMID: 6480596
Kinetic analysis of high-mobility-group proteins HMG-1 and HMG-I/Y binding to cholesterol-tagged DNA on a supported lipid monolayer.
Webster CI, Cooper MA, Packman LC, Williams DH, Gray JC., Nucleic Acids Res. 28(7), 2000
PMID: 10710428
Rice HMGB1 protein recognizes DNA structures and bends DNA efficiently.
Wu Q, Zhang W, Pwee KH, Kumar PP., Arch. Biochem. Biophys. 411(1), 2003
PMID: 12590928
Occurrence of five different chromosomal HMG1 proteins in various maize tissues.
Stemmer C, Grimm R, Grasser KD., Plant Mol. Biol. 41(3), 1999
PMID: 10598102
HMGB6 from Arabidopsis thaliana specifies a novel type of plant chromosomal HMGB protein.
Grasser KD, Grill S, Duroux M, Launholt D, Thomsen MS, Nielsen BV, Nielsen HK, Merkle T., Biochemistry 43(5), 2004
PMID: 14756567
Variability in Arabidopsis thaliana chromosomal high-mobility-group-1-like proteins.
Stemmer C, Ritt C, Igloi GL, Grimm R, Grasser KD., Eur. J. Biochem. 250(3), 1997
PMID: 9461286
Cloning and characterization of rice HMGB1 gene.
Wu Q, Zhang W, Pwee KH, Kumar PP., Gene 312(), 2003
PMID: 12909345
HMG-1 enhances HMG-I/Y binding to an A/T-rich enhancer element from the pea plastocyanin gene.
Webster CI, Packman LC, Gray JC., Eur. J. Biochem. 268(11), 2001
PMID: 11389716
The HMG-1 box protein family: classification and functional relationships.
Baxevanis AD, Landsman D., Nucleic Acids Res. 23(9), 1995
PMID: 7784217
The role of intercalating residues in chromosomal high-mobility-group protein DNA binding, bending and specificity.
Klass J, Murphy FV 4th, Fouts S, Serenil M, Changela A, Siple J, Churchill ME., Nucleic Acids Res. 31(11), 2003
PMID: 12771212
The S. cerevisiae architectural HMGB protein NHP6A complexed with DNA: DNA and protein conformational changes upon binding.
Masse JE, Wong B, Yen YM, Allain FH, Johnson RC, Feigon J., J. Mol. Biol. 323(2), 2002
PMID: 12381320
Basis for recognition of cisplatin-modified DNA by high-mobility-group proteins.
Ohndorf UM, Rould MA, He Q, Pabo CO, Lippard SJ., Nature 399(6737), 1999
PMID: 10385126
DNA-interactions and nuclear localisation of the chromosomal HMG domain protein SSRP1 from maize.
Rottgers K, Krohn NM, Lichota J, Stemmer C, Merkle T, Grasser KD., Plant J. 23(3), 2000
PMID: 10929132
Interactions of the basic N-terminal and the acidic C-terminal domains of the maize chromosomal HMGB1 protein.
Thomsen MS, Franssen L, Launholt D, Fojan P, Grasser KD., Biochemistry 43(25), 2004
PMID: 15209498
HMG1 protein stimulates DNA end joining by promoting association of DNA molecules via their ends.
Stros M, Cherny D, Jovin TM., Eur. J. Biochem. 267(13), 2000
PMID: 10866811
High-mobility-group chromosomal proteins: architectural components that facilitate chromatin function
Bustin, Prog. Nucl. Acids Res. 54(), 1996
Chromosomal proteins of Arabidopsis thaliana.
Moehs CP, McElwain EF, Spiker S., Plant Mol. Biol. 11(4), 1988
PMID: IND92000028
The solution structure and dynamics of the DNA-binding domain of HMG-D from Drosophila melanogaster.
Jones DN, Searles MA, Shaw GL, Churchill ME, Ner SS, Keeler J, Travers AA, Neuhaus D., Structure 2(7), 1994
PMID: 7922039
The structure of the HMG box and its interactions with DNA
Read, 1995
Structure of the HMG box motif in the B-domain of HMG1.
Weir HM, Kraulis PJ, Hill CS, Raine AR, Laue ED, Thomas JO., EMBO J. 12(4), 1993
PMID: 8467791
Structural requirements for cooperative binding of HMG1 to DNA minicircles.
Webb M, Payet D, Lee KB, Travers AA, Thomas JO., J. Mol. Biol. 309(1), 2001
PMID: 11491303
Drosophila DSP1 and rat HMGB1 have equivalent DNA binding properties and share a similar secondary fold.
Janke C, Martin D, Giraud-Panis MJ, Decoville M, Locker D., J. Biochem. 133(4), 2003
PMID: 12761302
High-mobility-group 1 protein mediates DNA bending as determined by ring closures.
Pil PM, Chow CS, Lippard SJ., Proc. Natl. Acad. Sci. U.S.A. 90(20), 1993
PMID: 8415724
Improved tools for biological sequence comparison.
Pearson WR, Lipman DJ., Proc. Natl. Acad. Sci. U.S.A. 85(8), 1988
PMID: 3162770
Gapped BLAST and PSI-BLAST: a new generation of protein database search programs.
Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ., Nucleic Acids Res. 25(17), 1997
PMID: 9254694
Gene identification with sequenced T-DNA tags generated by transformation of Arabidopsis cell suspension.
Mathur J, Szabados L, Schaefer S, Grunenberg B, Lossow A, Jonas-Straube E, Schell J, Koncz C, Koncz-Kalman Z., Plant J. 13(5), 1998
PMID: 9681013
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 16563436
PubMed | Europe PMC

Suchen in

Google Scholar