Utilization of soluble starch by a recombinant Corynebacterium glutamicum strain: Growth and lysine production

Seibold G, Auchter M, Berens S, Kalinowski J, Eikmanns BJ (2006)

Zeitschriftenaufsatz | Veröffentlicht | Englisch
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Seibold, Gerd; Auchter, Marc; Berens, Stephan; Kalinowski, JörnUniBi; Eikmanns, Bernhard J.
Abstract / Bemerkung
Corynebacterium glutamicum, well known for the industrial production of amino acids, grows aerobically on a variety of mono- and disaccharides and on alcohols and organic acids as single or combined sources of carbon and energy. Members of the genera Corynebacterium and Brevibacterium were here tested for their ability to use the homopolysaccharide starch as a substrate for growth. None of the 24 type strains tested showed growth on or degradation of this substrate, indicating that none of the strains synthesized and secreted starch-degrading enzymes. Introducing the Streptomyces griseus amy gene on an expression vector into the lysine-producer C. glutamicum DM1730, we constructed a C. glutamicum strain synthesizing and secreting a-amylase into the culture broth. Although some high-molecular-weight degradation products remained in the culture broth, this recombinant strain effectively used soluble starch as carbon and energy substrate for growth and also for lysine production. Thus, employment of our construct allows avoidance of the cost-intensive enzymatic hydrolysis of the starch, which commercially is used as a substrate in industrial amino acid fermentations. (c) 2006 Elsevier B.V. All rights reserved.
Corynebacterium glutamicum; amino acid production; lysine production; alpha-amylase; starch degradation
Page URI


Seibold G, Auchter M, Berens S, Kalinowski J, Eikmanns BJ. Utilization of soluble starch by a recombinant Corynebacterium glutamicum strain: Growth and lysine production. JOURNAL OF BIOTECHNOLOGY. 2006;124(2):381-391.
Seibold, G., Auchter, M., Berens, S., Kalinowski, J., & Eikmanns, B. J. (2006). Utilization of soluble starch by a recombinant Corynebacterium glutamicum strain: Growth and lysine production. JOURNAL OF BIOTECHNOLOGY, 124(2), 381-391. https://doi.org/10.1016/j.jbiotec.2005.12.027
Seibold, Gerd, Auchter, Marc, Berens, Stephan, Kalinowski, Jörn, and Eikmanns, Bernhard J. 2006. “Utilization of soluble starch by a recombinant Corynebacterium glutamicum strain: Growth and lysine production”. JOURNAL OF BIOTECHNOLOGY 124 (2): 381-391.
Seibold, G., Auchter, M., Berens, S., Kalinowski, J., and Eikmanns, B. J. (2006). Utilization of soluble starch by a recombinant Corynebacterium glutamicum strain: Growth and lysine production. JOURNAL OF BIOTECHNOLOGY 124, 381-391.
Seibold, G., et al., 2006. Utilization of soluble starch by a recombinant Corynebacterium glutamicum strain: Growth and lysine production. JOURNAL OF BIOTECHNOLOGY, 124(2), p 381-391.
G. Seibold, et al., “Utilization of soluble starch by a recombinant Corynebacterium glutamicum strain: Growth and lysine production”, JOURNAL OF BIOTECHNOLOGY, vol. 124, 2006, pp. 381-391.
Seibold, G., Auchter, M., Berens, S., Kalinowski, J., Eikmanns, B.J.: Utilization of soluble starch by a recombinant Corynebacterium glutamicum strain: Growth and lysine production. JOURNAL OF BIOTECHNOLOGY. 124, 381-391 (2006).
Seibold, Gerd, Auchter, Marc, Berens, Stephan, Kalinowski, Jörn, and Eikmanns, Bernhard J. “Utilization of soluble starch by a recombinant Corynebacterium glutamicum strain: Growth and lysine production”. JOURNAL OF BIOTECHNOLOGY 124.2 (2006): 381-391.

54 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Synthetic biology approaches to access renewable carbon source utilization in Corynebacterium glutamicum.
Zhao N, Qian L, Luo G, Zheng S., Appl Microbiol Biotechnol 102(22), 2018
PMID: 30218378
Fermentative production of L-pipecolic acid from glucose and alternative carbon sources.
Pérez-García F, Max Risse J, Friehs K, Wendisch VF., Biotechnol J 12(7), 2017
PMID: 28169491
A new metabolic route for the fermentative production of 5-aminovalerate from glucose and alternative carbon sources.
Jorge JMP, Pérez-García F, Wendisch VF., Bioresour Technol 245(pt b), 2017
PMID: 28522202
Engineering of Corynebacterium glutamicum for Consolidated Conversion of Hemicellulosic Biomass into Xylonic Acid.
Yim SS, Choi JW, Lee SH, Jeon EJ, Chung WJ, Jeong KJ., Biotechnol J 12(11), 2017
PMID: 28799725
Arabidopsis β-Amylase2 Is a K+-Requiring, Catalytic Tetramer with Sigmoidal Kinetics.
Monroe JD, Breault JS, Pope LE, Torres CE, Gebrejesus TB, Berndsen CE, Storm AR., Plant Physiol 175(4), 2017
PMID: 29066669
Detoxification of acidic biorefinery waste liquor for production of high value amino acid.
Christopher M, Anusree M, Mathew AK, Nampoothiri KM, Sukumaran RK, Pandey A., Bioresour Technol 213(), 2016
PMID: 26996259
Updates on industrial production of amino acids using Corynebacterium glutamicum.
Wendisch VF, Jorge JMP, Pérez-García F, Sgobba E., World J Microbiol Biotechnol 32(6), 2016
PMID: 27116971
Production of the Marine Carotenoid Astaxanthin by Metabolically Engineered Corynebacterium glutamicum.
Henke NA, Heider SA, Peters-Wendisch P, Wendisch VF., Mar Drugs 14(7), 2016
PMID: 27376307
A method for simultaneous gene overexpression and inactivation in the Corynebacterium glutamicum genome.
Xu J, Zhang J, Han M, Zhang W., J Ind Microbiol Biotechnol 43(10), 2016
PMID: 27377799
Transcription of Sialic Acid Catabolism Genes in Corynebacterium glutamicum Is Subject to Catabolite Repression and Control by the Transcriptional Repressor NanR.
Uhde A, Brühl N, Goldbeck O, Matano C, Gurow O, Rückert C, Marin K, Wendisch VF, Krämer R, Seibold GM., J Bacteriol 198(16), 2016
PMID: 27274030
Corynebacterium glutamicum possesses β-N-acetylglucosaminidase.
Matano C, Kolkenbrock S, Hamer SN, Sgobba E, Moerschbacher BM, Wendisch VF., BMC Microbiol 16(1), 2016
PMID: 27492186
The α-glucan phosphorylase MalP of Corynebacterium glutamicum is subject to transcriptional regulation and competitive inhibition by ADP-glucose.
Clermont L, Macha A, Müller LM, Derya SM, von Zaluskowski P, Eck A, Eikmanns BJ, Seibold GM., J Bacteriol 197(8), 2015
PMID: 25666133
A giant market and a powerful metabolism: L-lysine provided by Corynebacterium glutamicum.
Eggeling L, Bott M., Appl Microbiol Biotechnol 99(8), 2015
PMID: 25761623
Synthesis of chemicals by metabolic engineering of microbes.
Sun X, Shen X, Jain R, Lin Y, Wang J, Sun J, Wang J, Yan Y, Yuan Q., Chem Soc Rev 44(11), 2015
PMID: 25940754
Production and glucosylation of C50 and C 40 carotenoids by metabolically engineered Corynebacterium glutamicum.
Heider SA, Peters-Wendisch P, Netzer R, Stafnes M, Brautaset T, Wendisch VF., Appl Microbiol Biotechnol 98(3), 2014
PMID: 24270893
Engineering biotin prototrophic Corynebacterium glutamicum strains for amino acid, diamine and carotenoid production.
Peters-Wendisch P, Götker S, Heider SA, Komati Reddy G, Nguyen AQ, Stansen KC, Wendisch VF., J Biotechnol 192 Pt B(), 2014
PMID: 24486440
Engineering of Corynebacterium glutamicum for growth and L-lysine and lycopene production from N-acetyl-glucosamine.
Matano C, Uhde A, Youn JW, Maeda T, Clermont L, Marin K, Krämer R, Wendisch VF, Seibold GM., Appl Microbiol Biotechnol 98(12), 2014
PMID: 24668244
Metabolic engineering for the microbial production of carotenoids and related products with a focus on the rare C50 carotenoids.
Heider SA, Peters-Wendisch P, Wendisch VF, Beekwilder J, Brautaset T., Appl Microbiol Biotechnol 98(10), 2014
PMID: 24687754
Bacterial whole-cell biocatalysts by surface display of enzymes: toward industrial application.
Schüürmann J, Quehl P, Festel G, Jose J., Appl Microbiol Biotechnol 98(19), 2014
PMID: 25104026
Optimization of the IPP Precursor Supply for the Production of Lycopene, Decaprenoxanthin and Astaxanthin by Corynebacterium glutamicum.
Heider SA, Wolf N, Hofemeier A, Peters-Wendisch P, Wendisch VF., Front Bioeng Biotechnol 2(), 2014
PMID: 25191655
Engineering of Corynebacterium glutamicum for minimized carbon loss during utilization of D-xylose containing substrates.
Radek A, Krumbach K, Gätgens J, Wendisch VF, Wiechert W, Bott M, Noack S, Marienhagen J., J Biotechnol 192 Pt A(), 2014
PMID: 25304460
Production of L-lysine on different silage juices using genetically engineered Corynebacterium glutamicum.
Neuner A, Wagner I, Sieker T, Ulber R, Schneider K, Peifer S, Heinzle E., J Biotechnol 163(2), 2013
PMID: 22898177
Accelerated pentose utilization by Corynebacterium glutamicum for accelerated production of lysine, glutamate, ornithine and putrescine.
Meiswinkel TM, Gopinath V, Lindner SN, Nampoothiri KM, Wendisch VF., Microb Biotechnol 6(2), 2013
PMID: 23164409
Bio-based production of organic acids with Corynebacterium glutamicum.
Wieschalka S, Blombach B, Bott M, Eikmanns BJ., Microb Biotechnol 6(2), 2013
PMID: 23199277
Crude glycerol-based production of amino acids and putrescine by Corynebacterium glutamicum.
Meiswinkel TM, Rittmann D, Lindner SN, Wendisch VF., Bioresour Technol 145(), 2013
PMID: 23562176
Maltose uptake by the novel ABC transport system MusEFGK2I causes increased expression of ptsG in Corynebacterium glutamicum.
Henrich A, Kuhlmann N, Eck AW, Krämer R, Seibold GM., J Bacteriol 195(11), 2013
PMID: 23543710
Metabolic engineering of Corynebacterium glutamicum aimed at alternative carbon sources and new products.
Zahoor A, Lindner SN, Wendisch VF., Comput Struct Biotechnol J 3(), 2012
PMID: 24688664
Tools for genetic manipulations in Corynebacterium glutamicum and their applications.
Nešvera J, Pátek M., Appl Microbiol Biotechnol 90(5), 2011
PMID: 21519933
Amino acid production from rice straw and wheat bran hydrolysates by recombinant pentose-utilizing Corynebacterium glutamicum.
Gopinath V, Meiswinkel TM, Wendisch VF, Nampoothiri KM., Appl Microbiol Biotechnol 92(5), 2011
PMID: 21796382
Increased glucose utilization in Corynebacterium glutamicum by use of maltose, and its application for the improvement of L-valine productivity.
Krause FS, Henrich A, Blombach B, Krämer R, Eikmanns BJ, Seibold GM., Appl Environ Microbiol 76(1), 2010
PMID: 19880641
Putrescine production by engineered Corynebacterium glutamicum.
Schneider J, Wendisch VF., Appl Microbiol Biotechnol 88(4), 2010
PMID: 20661733
Link between phosphate starvation and glycogen metabolism in Corynebacterium glutamicum, revealed by metabolomics.
Woo HM, Noack S, Seibold GM, Willbold S, Eikmanns BJ, Bott M., Appl Environ Microbiol 76(20), 2010
PMID: 20802079
Visualizing post genomics data-sets on customized pathway maps by ProMeTra-aeration-dependent gene expression and metabolism of Corynebacterium glutamicum as an example.
Neuweger H, Persicke M, Albaum SP, Bekel T, Dondrup M, Hüser AT, Winnebald J, Schneider J, Kalinowski J, Goesmann A., BMC Syst Biol 3(), 2009
PMID: 19698148
Engineering of a glycerol utilization pathway for amino acid production by Corynebacterium glutamicum.
Rittmann D, Lindner SN, Wendisch VF., Appl Environ Microbiol 74(20), 2008
PMID: 18757581

52 References

Daten bereitgestellt von Europe PubMed Central.

Purification and characterization of an alkaline amylopullulanase with both alpha-1,4 and alpha-1,6 hydrolytic activity from alkalophilic Bacillus sp. KSM-1378.
Ara K, Saeki K, Igarashi K, Takaiwa M, Uemura T, Hagihara H, Kawai S, Ito S., Biochim. Biophys. Acta 1243(3), 1995
PMID: 7727505
The amylopullulanase of Bacillus sp. DSM 405.
Brunswick JM, Kelly CT, Fogarty WM., Appl. Microbiol. Biotechnol. 51(2), 1999
PMID: 10091322
Stable, inducible thermoacidophilic alpha-amylase from Bacillus acidocaldarius.
Buonocore V, Caporale C, De Rosa M, Gambacorta A., J. Bacteriol. 128(2), 1976
PMID: 10276
Construction of new cloning vectors for Brevibacterium lactofermentum.
Cadenas RF, Fernandez-Gonzalez C, Martin JF, Gil JA., FEMS Microbiol. Lett. 137(1), 1996
PMID: 8935658
Amy as a reporter gene for promoter activity in Nocardia lactamdurans: comparison of promoters of the cephamycin cluster.
Chary VK, de la Fuente JL, Liras P, Martin JF., Appl. Environ. Microbiol. 63(8), 1997
PMID: 9251185
Cloning, sequencing and expression of the gene encoding extracellular α-amylase from Pyrococcus furiosus and biochemical characterization of the recombinant enzyme
Dong, Appl. Environ. Microbiol. 69(), 1997
Amplification of three threonine biosynthesis genes in Corynebacterium glutamicum and its influence on carbon flux in different strains.
Eikmanns BJ, Metzger M, Reinscheid D, Kircher M, Sahm H., Appl. Microbiol. Biotechnol. 34(5), 1991
PMID: 1369320
Cloning and characterization of the beta-amylase gene from Bacillus polymyxa.
Friedberg F, Rhodes C., J. Bacteriol. 165(3), 1986
PMID: 2419310
Acetate metabolism and its regulation in Corynebacterium glutamicum.
Gerstmeir R, Wendisch VF, Schnicke S, Ruan H, Farwick M, Reinscheid D, Eikmanns BJ., J. Biotechnol. 104(1-3), 2003
PMID: 12948633
Industrial production of amino acids by coryneform bacteria.
Hermann T., J. Biotechnol. 104(1-3), 2003
PMID: 12948636
Molecular cloning and characterization of the Streptomyces hygroscopicus alpha-amylase gene.
Hoshiko S, Makabe O, Nojiri C, Katsumata K, Satoh E, Nagaoka K., J. Bacteriol. 169(3), 1987
PMID: 3029013
Hyperexpression of the gene for a Bacillus alpha-amylase in Bacillus subtilis cells: enzymatic properties and crystallization of the recombinant enzyme.
Ikawa K, Araki H, Tsujino Y, Hayashi Y, Igarashi K, Hatada Y, Hagihara H, Ozawa T, Ozaki K, Kobayashi T, Ito S., Biosci. Biotechnol. Biochem. 62(9), 1998
PMID: 9805372
Amino acid production processes.
Ikeda M., Adv. Biochem. Eng. Biotechnol. 79(), 2003
PMID: 12523387
The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins.
Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, Dusch N, Eggeling L, Eikmanns BJ, Gaigalat L, Goesmann A, Hartmann M, Huthmacher K, Kramer R, Linke B, McHardy AC, Meyer F, Mockel B, Pfefferle W, Puhler A, Rey DA, Ruckert C, Rupp O, Sahm H, Wendisch VF, Wiegrabe I, Tauch A., J. Biotechnol. 104(1-3), 2003
PMID: 12948626
l-lysine production
Kelle, 2005
l-glutamate production
Kimura, 2005
Haloalkaliphilic maltotriose-forming alpha-amylase from the archaebacterium Natronococcus sp. strain Ah-36.
Kobayashi T, Kanai H, Hayashi T, Akiba T, Akaboshi R, Horikoshi K., J. Bacteriol. 174(11), 1992
PMID: 1592801
The genus Corynebacterium—non-medical
Liebl, 1991
Corynebacterium taxonomy
Liebl, 2005
Use of dinitrosalicylic acid reagent for determination of reducing sugar
Miller, Anal. Chem. 31(), 1959
Analyses of enzyme II gene mutants for sugar transport and heterologous expression of fructokinase gene in Corynebacterium glutamicum ATCC 13032.
Moon MW, Kim HJ, Oh TK, Shin CS, Lee JS, Kim SJ, Lee JK., FEMS Microbiol. Lett. 244(2), 2005
PMID: 15766777
Development of an arming yeast strain for efficient utilization of starch by co-display of sequential amylolytic enzymes on the cell surface.
Murai T, Ueda M, Shibasaki Y, Kamasawa N, Osumi M, Imanaka T, Tanaka A., Appl. Microbiol. Biotechnol. 51(1), 1999
PMID: 10077821
Protein engineering of bacterial alpha-amylases.
Nielsen JE, Borchert TV., Biochim. Biophys. Acta 1543(2), 2000
PMID: 11150610
Comparative complete genome sequence analysis of the amino acid replacements responsible for the thermostability of Corynebacterium efficiens.
Nishio Y, Nakamura Y, Kawarabayasi Y, Usuda Y, Kimura E, Sugimoto S, Matsui K, Yamagishi A, Kikuchi H, Ikeo K, Gojobori T., Genome Res. 13(7), 2003
PMID: 12840036
Immobilization of Streptomyces flavochromogenes pullulanase on tannic acid and TEAE--cellulose.
Ohba R, Chaen H, Hayashi S, Ueda S., Biotechnol. Bioeng. 20(5), 1978
PMID: 25683
Purification and Properties of a Maltotetraose- and Maltotriose-Producing Amylase from Chloroflexus aurantiacus.
Ratanakhanokchai K, Kaneko J, Kamio Y, Izaki K., Appl. Environ. Microbiol. 58(8), 1992
PMID: 16348751
A thermophilic extracellular -amylase from Bacillus licheniformis.
Saito N., Arch. Biochem. Biophys. 155(2), 1973
PMID: 4705426

Sambrook, 2001
Development of an ideal starch saccharification process using amylolytic enzymes from thermophiles.
Satyanarayana T, Noorwez SM, Kumar S, Rao JL, Ezhilvannan M, Kaur P., Biochem. Soc. Trans. 32(Pt 2), 2004
PMID: 15046588
A functionally split pathway for lysine synthesis in Corynebacterium glutamicium.
Schrumpf B, Schwarzer A, Kalinowski J, Puhler A, Eggeling L, Sahm H., J. Bacteriol. 173(14), 1991
PMID: 1906065
Isolation of β-amylase producing microorganisms
Shinke, Agric. Biol. Chem. 38(), 1974
The amylases of five streptomycetes.
SIMPSON FJ, McCOY E., Appl Microbiol 1(5), 1953
PMID: 13092847
Characterization of pGA1, a new plasmid from Corynebacterium glutamicum LP-6.
Sonnen H, Thierbach G, Kautz S, Kalinowski J, Schneider J, Puhler A, Kutzner HJ., Gene 107(1), 1991
PMID: 1660431
Isoleucine uptake in Corynebacterium glutamicum ATCC 13032 is directed by the brnQ gene product.
Tauch A, Hermann T, Burkovski A, Kramer R, Puhler A, Kalinowski J., Arch. Microbiol. 169(4), 1998
PMID: 9531631
Strategy to sequence the genome of Corynebacterium glutamicum ATCC 13032: use of a cosmid and a bacterial artificial chromosome library.
Tauch A, Homann I, Mormann S, Ruberg S, Billault A, Bathe B, Brand S, Brockmann-Gretza O, Ruckert C, Schischka N, Wrenger C, Hoheisel J, Mockel B, Huthmacher K, Pfefferle W, Puhler A, Kalinowski J., J. Biotechnol. 95(1), 2002
PMID: 11879709
Construction and characterization of new corynebacterial plasmids carrying the alpha-amylase gene.
Ugorcakova J, Jucovic M, Bukovska G, Timko J., Folia Microbiol. (Praha) 41(1), 1996
PMID: 9090819
Microbial amylolytic enzymes.
Vihinen M, Mantsala P., Crit. Rev. Biochem. Mol. Biol. 24(4), 1989
PMID: 2548811
Microbial hydrolysis of polysaccharides.
Warren RA., Annu. Rev. Microbiol. 50(), 1996
PMID: 8905079
Targeted disruption of the alpha-amylase gene in the hyperthermophilic archaeon Sulfolobus solfataricus.
Worthington P, Hoang V, Perez-Pomares F, Blum P., J. Bacteriol. 185(2), 2003
PMID: 12511494

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

PMID: 16488498
PubMed | Europe PMC

Suchen in

Google Scholar