ISOLLE: LLE with geodesic distance

Varini C, Degenhard A, Nattkemper TW (2006)
NEUROCOMPUTING 69(13-15): 1768-1771.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Autor*in
Varini, Claudio; Degenhard, Andreas; Nattkemper, Tim WilhelmUniBi
Abstract / Bemerkung
We propose an extension of the algorithm for nonlinear dimensional reduction locally linear embedding (LLE) based on the usage of the geodesic distance (ISOLLE). In LLE, each data point is reconstructed from a linear combination of its n nearest neighbors, which are typically found using the Euclidean distance. We show that the search for the neighbors performed with respect to the geodesic distance can lead to a more accurate preservation of the data structure. This is confirmed by experiments on both real-world and synthetic data. (c) 2006 Elsevier B.V. All rights reserved.
Stichworte
LLE; geodesic distance; nonlinear dimensional data reduction
Erscheinungsjahr
2006
Zeitschriftentitel
NEUROCOMPUTING
Band
69
Ausgabe
13-15
Seite(n)
1768-1771
ISSN
0925-2312
Page URI
https://pub.uni-bielefeld.de/record/1598535

Zitieren

Varini C, Degenhard A, Nattkemper TW. ISOLLE: LLE with geodesic distance. NEUROCOMPUTING. 2006;69(13-15):1768-1771.
Varini, C., Degenhard, A., & Nattkemper, T. W. (2006). ISOLLE: LLE with geodesic distance. NEUROCOMPUTING, 69(13-15), 1768-1771. doi:10.1016/j.neucom.2005.12.120
Varini, C., Degenhard, A., and Nattkemper, T. W. (2006). ISOLLE: LLE with geodesic distance. NEUROCOMPUTING 69, 1768-1771.
Varini, C., Degenhard, A., & Nattkemper, T.W., 2006. ISOLLE: LLE with geodesic distance. NEUROCOMPUTING, 69(13-15), p 1768-1771.
C. Varini, A. Degenhard, and T.W. Nattkemper, “ISOLLE: LLE with geodesic distance”, NEUROCOMPUTING, vol. 69, 2006, pp. 1768-1771.
Varini, C., Degenhard, A., Nattkemper, T.W.: ISOLLE: LLE with geodesic distance. NEUROCOMPUTING. 69, 1768-1771 (2006).
Varini, Claudio, Degenhard, Andreas, and Nattkemper, Tim Wilhelm. “ISOLLE: LLE with geodesic distance”. NEUROCOMPUTING 69.13-15 (2006): 1768-1771.