Hierarchical feed-forward network for object detection tasks
Bax I, Heidemann G, Ritter H (2006)
Optical Engineering 45(6): 067203.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Bax, Ingo;
Heidemann, Gunther;
Ritter, HelgeUniBi
Einrichtung
Abstract / Bemerkung
Recent research on neocognitron-like neural feed-forward architectures, which have formerly been successfully applied to the recognition of artificial stimuli such as paperclip objects, now also opens up application to more natural stimuli. Such networks exhibit high-recognition performance with respect to translation, rotation, scaling and cluttered surroundings. In this contribution, we introduce a new type of hierarchical model, which is trained using a non-negative matrix factorization algorithm. In contrast to previous work, our approach cannot only classify objects but is also capable of rapid object detection in natural scenes. Thus, the time-consuming and conceptually unsatisfying split-up into a localization stage (e.g., using segmentation) and a subsequent classification can be avoided. The network consists of alternating layers of simple and complex cell planes and incorporates nonlinear processing schemes that have been proposed in recent literature. Learning of receptive field profiles for the lower layers of the network takes place by unsupervised learning whereas a final classification layer is trained supervised. This final layer is then utilized for detection. We test the classification performance of the network on images of natural objects which are systematically distorted. To test the ability to detect objects, cluttered natural background is used. (c) 2006 Society of Photo-Optical Instrumentation Engineers.
Stichworte
neocognitron;
neural processings;
non-negative matrix factorization;
object detection;
object recognition
Erscheinungsjahr
2006
Zeitschriftentitel
Optical Engineering
Band
45
Ausgabe
6
Art.-Nr.
067203
ISSN
0091-3286
Page URI
https://pub.uni-bielefeld.de/record/1598400
Zitieren
Bax I, Heidemann G, Ritter H. Hierarchical feed-forward network for object detection tasks. Optical Engineering. 2006;45(6): 067203.
Bax, I., Heidemann, G., & Ritter, H. (2006). Hierarchical feed-forward network for object detection tasks. Optical Engineering, 45(6), 067203. https://doi.org/10.1117/1.2209948
Bax, Ingo, Heidemann, Gunther, and Ritter, Helge. 2006. “Hierarchical feed-forward network for object detection tasks”. Optical Engineering 45 (6): 067203.
Bax, I., Heidemann, G., and Ritter, H. (2006). Hierarchical feed-forward network for object detection tasks. Optical Engineering 45:067203.
Bax, I., Heidemann, G., & Ritter, H., 2006. Hierarchical feed-forward network for object detection tasks. Optical Engineering, 45(6): 067203.
I. Bax, G. Heidemann, and H. Ritter, “Hierarchical feed-forward network for object detection tasks”, Optical Engineering, vol. 45, 2006, : 067203.
Bax, I., Heidemann, G., Ritter, H.: Hierarchical feed-forward network for object detection tasks. Optical Engineering. 45, : 067203 (2006).
Bax, Ingo, Heidemann, Gunther, and Ritter, Helge. “Hierarchical feed-forward network for object detection tasks”. Optical Engineering 45.6 (2006): 067203.
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Suchen in