Global gene expression during stringent response in Corynebacterium glutamicum in presence and absence of the rel gene encoding (p) ppGpp synthase

Brockmann-Gretza O, Kalinowski J (2006)
BMC Genomics 7(1): 230.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
Brockmann-Gretza, Olaf; Kalinowski, JörnUniBi
Abstract / Bemerkung
Background: The stringent response is the initial reaction of microorganisms to nutritional stress. During stringent response the small nucleotides ( p) ppGpp act as global regulators and reprogram bacterial transcription. In this work, the genetic network controlled by the stringent response was characterized in the amino acid-producing Corynebacterium glutamicum. Results: The transcriptome of a C. glutamicum rel gene deletion mutant, unable to synthesize ( p) ppGpp and to induce the stringent response, was compared with that of its rel-proficient parent strain by microarray analysis. A total of 357 genes were found to be transcribed differentially in the rel-deficient mutant strain. In a second experiment, the stringent response was induced by addition of DL-serine hydroxamate (SHX) in early exponential growth phase. The time point of the maximal effect on transcription was determined by real-time RT-PCR using the histidine and serine biosynthetic genes. Transcription of all of these genes reached a maximum at 10 minutes after SHX addition. Microarray experiments were performed comparing the transcriptomes of SHX-induced cultures of the rel-proficient strain and the rel mutant. The differentially expressed genes were grouped into three classes. Class A comprises genes which are differentially regulated only in the presence of an intact rel gene. This class includes the non-essential sigma factor gene sigB which was upregulated and a large number of genes involved in nitrogen metabolism which were downregulated. Class B comprises genes which were differentially regulated in response to SHX in both strains, independent of the rel gene. A large number of genes encoding ribosomal proteins fall into this class, all being downregulated. Class C comprises genes which were differentially regulated in response to SHX only in the rel mutant. This class includes genes encoding putative stress proteins and global transcriptional regulators that might be responsible for the complex transcriptional patterns detected in the rel mutant when compared directly with its rel-proficient parent strain. Conclusion: In C. glutamicum the stringent response enfolds a fast answer to an induced amino acid starvation on the transcriptome level. It also showed some significant differences to the transcriptional reactions occuring in Escherichia coli and Bacillus subtilis. Notable are the rel-dependent regulation of the nitrogen metabolism genes and the rel-independent regulation of the genes encoding ribosomal proteins.
BMC Genomics
Page URI


Brockmann-Gretza O, Kalinowski J. Global gene expression during stringent response in Corynebacterium glutamicum in presence and absence of the rel gene encoding (p) ppGpp synthase. BMC Genomics. 2006;7(1):230.
Brockmann-Gretza, O., & Kalinowski, J. (2006). Global gene expression during stringent response in Corynebacterium glutamicum in presence and absence of the rel gene encoding (p) ppGpp synthase. BMC Genomics, 7(1), 230.
Brockmann-Gretza, Olaf, and Kalinowski, Jörn. 2006. “Global gene expression during stringent response in Corynebacterium glutamicum in presence and absence of the rel gene encoding (p) ppGpp synthase”. BMC Genomics 7 (1): 230.
Brockmann-Gretza, O., and Kalinowski, J. (2006). Global gene expression during stringent response in Corynebacterium glutamicum in presence and absence of the rel gene encoding (p) ppGpp synthase. BMC Genomics 7, 230.
Brockmann-Gretza, O., & Kalinowski, J., 2006. Global gene expression during stringent response in Corynebacterium glutamicum in presence and absence of the rel gene encoding (p) ppGpp synthase. BMC Genomics, 7(1), p 230.
O. Brockmann-Gretza and J. Kalinowski, “Global gene expression during stringent response in Corynebacterium glutamicum in presence and absence of the rel gene encoding (p) ppGpp synthase”, BMC Genomics, vol. 7, 2006, pp. 230.
Brockmann-Gretza, O., Kalinowski, J.: Global gene expression during stringent response in Corynebacterium glutamicum in presence and absence of the rel gene encoding (p) ppGpp synthase. BMC Genomics. 7, 230 (2006).
Brockmann-Gretza, Olaf, and Kalinowski, Jörn. “Global gene expression during stringent response in Corynebacterium glutamicum in presence and absence of the rel gene encoding (p) ppGpp synthase”. BMC Genomics 7.1 (2006): 230.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Access Level
OA Open Access
Zuletzt Hochgeladen
MD5 Prüfsumme

37 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Functional Characterization of a Small Alarmone Hydrolase in Corynebacterium glutamicum.
Ruwe M, Rückert C, Kalinowski J, Persicke M., Front Microbiol 9(), 2018
PMID: 29867827
Global Gene Expression Analysis of Cross-Protected Phenotype of Pectobacterium atrosepticum.
Gorshkov V, Kwenda S, Petrova O, Osipova E, Gogolev Y, Moleleki LN., PLoS One 12(1), 2017
PMID: 28081189
The complete 12 Mb genome and transcriptome of Nonomuraea gerenzanensis with new insights into its duplicated "magic" RNA polymerase.
D'Argenio V, Petrillo M, Pasanisi D, Pagliarulo C, Colicchio R, Talà A, de Biase MS, Zanfardino M, Scolamiero E, Pagliuca C, Gaballo A, Cicatiello AG, Cantiello P, Postiglione I, Naso B, Boccia A, Durante M, Cozzuto L, Salvatore P, Paolella G, Salvatore F, Alifano P., Sci Rep 6(1), 2016
PMID: 28442708
Transcriptomic analysis of three Veillonella spp. present in carious dentine and in the saliva of caries-free individuals.
Do T, Sheehy EC, Mulli T, Hughes F, Beighton D., Front Cell Infect Microbiol 5(), 2015
PMID: 25859434
Bacterial transcriptome reorganization in thermal adaptive evolution.
Ying BW, Matsumoto Y, Kitahara K, Suzuki S, Ono N, Furusawa C, Kishimoto T, Yomo T., BMC Genomics 16(), 2015
PMID: 26474851
Histidine biosynthesis, its regulation and biotechnological application in Corynebacterium glutamicum.
Kulis-Horn RK, Persicke M, Kalinowski J., Microb Biotechnol 7(1), 2014
PMID: 23617600
Differential radio-tolerance of nutrition-induced morphotypes of Deinococcus radiodurans R1.
Shukla SK, Sankar GG, Paraneeiswaran A, Rao TS., Curr Microbiol 68(2), 2014
PMID: 24121615
σ(ECF) factors of gram-positive bacteria: a focus on Bacillus subtilis and the CMNR group.
Souza BM, Castro TL, Carvalho RD, Seyffert N, Silva A, Miyoshi A, Azevedo V., Virulence 5(5), 2014
PMID: 24921931
Proteome phenotyping of ΔrelA mutants in Enterococcus faecalis V583.
Yan X, Budin-Verneuil A, Auffray Y, Pichereau V., Can J Microbiol 60(8), 2014
PMID: 25050451
ppGpp metabolism is involved in heterocyst development in the cyanobacterium Anabaena sp. strain PCC 7120.
Zhang SR, Lin GM, Chen WL, Wang L, Zhang CC., J Bacteriol 195(19), 2013
PMID: 23935047
Global transcriptional analysis of the stringent response in Enterococcus faecalis.
Gaca AO, Abranches J, Kajfasz JK, Lemos JA., Microbiology 158(pt 8), 2012
PMID: 22653948
Autoinduction of a genetic locus encoding putative acyltransferase in Corynebacterium glutamicum.
Shin HS, Kim YJ, Yoo IH, Lee HS, Jin S, Ha UH., Biotechnol Lett 33(1), 2011
PMID: 20821248
Stress response regulators identified through genome-wide transcriptome analysis of the (p)ppGpp-dependent response in Rhizobium etli.
Vercruysse M, Fauvart M, Jans A, Beullens S, Braeken K, Cloots L, Engelen K, Marchal K, Michiels J., Genome Biol 12(2), 2011
PMID: 21324192
Physiological and transcriptional response of Lactobacillus casei ATCC 334 to acid stress.
Broadbent JR, Larsen RL, Deibel V, Steele JL., J Bacteriol 192(9), 2010
PMID: 20207759
Factors enhancing L-valine production by the growth-limited L-isoleucine auxotrophic strain Corynebacterium glutamicum DeltailvA DeltapanB ilvNM13 (pECKAilvBNC).
Denina I, Paegle L, Prouza M, Holátko J, Pátek M, Nesvera J, Ruklisha M., J Ind Microbiol Biotechnol 37(7), 2010
PMID: 20364396
The serine hydroxymethyltransferase gene glyA in Corynebacterium glutamicum is controlled by GlyR.
Schweitzer JE, Stolz M, Diesveld R, Etterich H, Eggeling L., J Biotechnol 139(3), 2009
PMID: 19124047
Microarray studies reveal a 'differential response' to moderate or severe heat shock of the HrcA- and HspR-dependent systems in Corynebacterium glutamicum.
Barreiro C, Nakunst D, Hüser AT, de Paz HD, Kalinowski J, Martín JF., Microbiology 155(pt 2), 2009
PMID: 19202085
Phenotypes and gene expression profiles of Saccharopolyspora erythraea rifampicin-resistant (rif) mutants affected in erythromycin production.
Carata E, Peano C, Tredici SM, Ferrari F, Talà A, Corti G, Bicciato S, De Bellis G, Alifano P., Microb Cell Fact 8(), 2009
PMID: 19331655
A game with many players: control of gdh transcription in Corynebacterium glutamicum.
Hänssler E, Müller T, Palumbo K, Patek M, Brocker M, Krämer R, Burkovski A., J Biotechnol 142(2), 2009
PMID: 19394370
The role of relA and spoT in Yersinia pestis KIM5 pathogenicity.
Sun W, Roland KL, Branger CG, Kuang X, Curtiss R., PLoS One 4(8), 2009
PMID: 19701461
Depiction of metabolome changes in histidine-starved Escherichia coli by CE-TOFMS.
Ohashi Y, Hirayama A, Ishikawa T, Nakamura S, Shimizu K, Ueno Y, Tomita M, Soga T., Mol Biosyst 4(2), 2008
PMID: 18213407
Transcription profiling of the stringent response in Escherichia coli.
Durfee T, Hansen AM, Zhi H, Blattner FR, Jin DJ., J Bacteriol 190(3), 2008
PMID: 18039766
Control of bacterial transcription, translation and replication by (p)ppGpp.
Srivatsan A, Wang JD., Curr Opin Microbiol 11(2), 2008
PMID: 18359660
SpoT-triggered stringent response controls usp gene expression in Pseudomonas aeruginosa.
Boes N, Schreiber K, Schobert M., J Bacteriol 190(21), 2008
PMID: 18776018
Rickettsia conorii transcriptional response within inoculation eschar.
Renesto P, Rovery C, Schrenzel J, Leroy Q, Huyghe A, Li W, Lepidi H, François P, Raoult D., PLoS One 3(11), 2008
PMID: 18997861

53 References

Daten bereitgestellt von Europe PubMed Central.

Cashel M, Gentry DR, Hernandez VJ, Villa D., 1996
Revisiting the stringent response, ppGpp and starvation signaling.
Chatterji D, Ojha AK., Curr. Opin. Microbiol. 4(2), 2001
PMID: 11282471
The stringent response in Streptomyces coelicolor A3(2).
Strauch E, Takano E, Baylis HA, Bibb MJ., Mol. Microbiol. 5(2), 1991
PMID: 1710311
Relaxed rrn expression and amino acid requirement of a Corynebacterium glutamicum rel mutant defective in (p)ppGpp metabolism.
Tauch A, Wehmeier L, Gotker S, Puhler A, Kalinowski J., FEMS Microbiol. Lett. 201(1), 2001
PMID: 11445167
The role of the Corynebacterium glutamicum rel gene in (p)ppGpp metabolism.
Wehmeier L, Schafer A, Burkovski A, Kramer R, Mechold U, Malke H, Puhler A, Kalinowski J., Microbiology (Reading, Engl.) 144 ( Pt 7)(), 1998
PMID: 9695918
A Corynebacterium glutamicum mutant with a defined deletion within the rplK gene is impaired in (p)ppGpp accumulation upon amino acid starvation.
Wehmeier L, Brockmann-Gretza O, Pisabarro A, Tauch A, Puhler A, Martin JF, Kalinowski J., Microbiology (Reading, Engl.) 147(Pt 3), 2001
PMID: 11238976
Development of a Corynebacterium glutamicum DNA microarray and validation by genome-wide expression profiling during growth with propionate as carbon source.
Huser AT, Becker A, Brune I, Dondrup M, Kalinowski J, Plassmeier J, Puhler A, Wiegrabe I, Tauch A., J. Biotechnol. 106(2-3), 2003
PMID: 14651867
The COG database: an updated version includes eukaryotes.
Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B, Koonin EV, Krylov DM, Mazumder R, Mekhedov SL, Nikolskaya AN, Rao BS, Smirnov S, Sverdlov AV, Vasudevan S, Wolf YI, Yin JJ, Natale DA., BMC Bioinformatics 4(), 2003
PMID: 12969510
AmtR, a global repressor in the nitrogen regulation system of Corynebacterium glutamicum.
Jakoby M, Nolden L, Meier-Wagner J, Kramer R, Burkovski A., Mol. Microbiol. 37(4), 2000
PMID: 10972815
Transcriptional analysis of the sigA and sigB genes of Brevibacterium lactofermentum.
Oguiza JA, Marcos AT, Martin JF., FEMS Microbiol. Lett. 153(1), 1997
PMID: 9252580
The Brevibacterium flavum sigma factor SigB has a role in the environmental stress response.
Halgasova N, Bukovska G, Ugorcakova J, Timko J, Kormanec J., FEMS Microbiol. Lett. 216(1), 2002
PMID: 12423756
Nifs and Sufs in malaria.
Ellis KE, Clough B, Saldanha JW, Wilson RJ., Mol. Microbiol. 41(5), 2001
PMID: 11555280
Functional genomics and expression analysis of the Corynebacterium glutamicum fpr2-cysIXHDNYZ gene cluster involved in assimilatory sulphate reduction.
Ruckert C, Koch DJ, Rey DA, Albersmeier A, Mormann S, Puhler A, Kalinowski J., BMC Genomics 6(), 2005
PMID: 16159395
Promoter domain mediates guanosine tetraphosphate activation of the histidine operon.
Riggs DL, Mueller RD, Kwan HS, Artz SW., Proc. Natl. Acad. Sci. U.S.A. 83(24), 1986
PMID: 3540936
Functional and genetic characterization of the (methyl)ammonium uptake carrier of Corynebacterium glutamicum.
Siewe RM, Weil B, Burkovski A, Eikmanns BJ, Eikmanns M, Kramer R., J. Biol. Chem. 271(10), 1996
PMID: 8621394
Utilization of creatinine as an alternative nitrogen source in Corynebacterium glutamicum.
Bendt AK, Beckers G, Silberbach M, Wittmann A, Burkovski A., Arch. Microbiol. 181(6), 2004
PMID: 15148566
Urease of Corynebacterium glutamicum: organization of corresponding genes and investigation of activity.
Nolden L, Beckers G, Mockel B, Pfefferle W, Nampoothiri KM, Kramera R, Burkovskia A., FEMS Microbiol. Lett. 189(2), 2000
PMID: 10930756
Glutamine synthetases of Corynebacterium glutamicum: transcriptional control and regulation of activity.
Nolden L, Farwick M, Kramer R, Burkovski A., FEMS Microbiol. Lett. 201(1), 2001
PMID: 11445173
Structure of the urease operon of Corynebacterium glutamicum.
Puskas LG, Inui M, Yukawa H., DNA Seq. 11(5), 2000
PMID: 11328647
Molecular analysis of the Corynebacterium glutamicum gdh gene encoding glutamate dehydrogenase.
Bormann ER, Eikmanns BJ, Sahm H., Mol. Microbiol. 6(3), 1992
PMID: 1552846
Regulation of AmtR-controlled gene expression in Corynebacterium glutamicum: mechanism and characterization of the AmtR regulon.
Beckers G, Strosser J, Hildebrandt U, Kalinowski J, Farwick M, Kramer R, Burkovski A., Mol. Microbiol. 58(2), 2005
PMID: 16194241
DNA microarray analysis of the nitrogen starvation response of Corynebacterium glutamicum.
Silberbach M, Huser A, Kalinowski J, Puhler A, Walter B, Kramer R, Burkovski A., J. Biotechnol. 119(4), 2005
PMID: 15935503
Synthesis of the stationary-phase sigma factor sigma s is positively regulated by ppGpp.
Gentry DR, Hernandez VJ, Nguyen LH, Jensen DB, Cashel M., J. Bacteriol. 175(24), 1993
PMID: 8253685
Separate mechanisms activate sigma B of Bacillus subtilis in response to environmental and metabolic stresses.
Voelker U, Voelker A, Maul B, Hecker M, Dufour A, Haldenwang WG., J. Bacteriol. 177(13), 1995
PMID: 7601843
Transcriptome and proteome analysis of Bacillus subtilis gene expression in response to superoxide and peroxide stress.
Mostertz J, Scharf C, Hecker M, Homuth G., Microbiology (Reading, Engl.) 150(Pt 2), 2004
PMID: 14766928
Regulation by proteolysis: developmental switches.
Gottesman S., Curr. Opin. Microbiol. 2(2), 1999
PMID: 10322171
Global role for ClpP-containing proteases in stationary-phase adaptation of
Weichart D, Querfurth N, Dreger M, Hengge-Aronis R., 2003
Dps protects cells against multiple stresses during stationary phase.
Nair S, Finkel SE., J. Bacteriol. 186(13), 2004
PMID: 15205421
Genetics and physiology of the rel system of Bacillus subtilis.
Smith I, Paress P, Cabane K, Dubnau E., Mol. Gen. Genet. 178(2), 1980
PMID: 6248722
The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins.
Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, Dusch N, Eggeling L, Eikmanns BJ, Gaigalat L, Goesmann A, Hartmann M, Huthmacher K, Kramer R, Linke B, McHardy AC, Meyer F, Mockel B, Pfefferle W, Puhler A, Rey DA, Ruckert C, Rupp O, Sahm H, Wendisch VF, Wiegrabe I, Tauch A., J. Biotechnol. 104(1-3), 2003
PMID: 12948626
Efficient electrotransformation of corynebacterium diphtheriae with a mini-replicon derived from the Corynebacterium glutamicum plasmid pGA1.
Tauch A, Kirchner O, Loffler B, Gotker S, Puhler A, Kalinowski J., Curr. Microbiol. 45(5), 2002
PMID: 12232668

Sambrook J, Fritsch EF, Maniatis T., 1989
EMMA: a platform for consistent storage and efficient analysis of microarray data.
Dondrup M, Goesmann A, Bartels D, Kalinowski J, Krause L, Linke B, Rupp O, Sczyrba A, Puhler A, Meyer F., J. Biotechnol. 106(2-3), 2003
PMID: 14651856

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

PMID: 16961923
PubMed | Europe PMC

Suchen in

Google Scholar