Arabidopsis chromatin-associated HMGA and HMGB use different nuclear targeting signals and display highly dynamic localization within the nucleus

Launholt D, Merkle T, Houben A, Schulz A, Grasser KD (2006)
The Plant Cell 18(11): 2904-2918.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Launholt, Dorte; Merkle, ThomasUniBi; Houben, Andreas; Schulz, Alexander; Grasser, Klaus D.
Abstract / Bemerkung
In plants, the chromatin-associated high mobility group ( HMG) proteins occur in two subfamilies termed HMGA and HMGB. The HMGA proteins are characterized by the presence of four AT-hook DNA binding motifs, and the HMGB proteins contain an HMG box DNA binding domain. As architectural factors, the HMG proteins appear to be involved in the regulation of transcription and other DNA-dependent processes. We have examined the subcellular localization of Arabidopsis thaliana HMGA, HMGB1, and HMGB5, revealing that they localize to the cell nucleus. They display a speckled distribution pattern throughout the chromatin of interphase nuclei, whereas none of the proteins associate with condensed mitotic chromosomes. HMGA is targeted to the nucleus by a monopartite nuclear localization signal, while efficient nuclear accumulation of HMGB1/5 requires large portions of the basic N-terminal part of the proteins. The acidic C-terminal domain interferes with nucleolar targeting of HMGB1. Fluorescence recovery after photobleaching experiments revealed that HMGA and HMGB proteins are extremely dynamic in the nucleus, indicating that they bind chromatin only transiently before moving on to the next site, thereby continuously scanning the genome for targets. By contrast, the majority of histone H2B is basically immobile within the nucleus, while linker histone H1.2 is relatively mobile.
The Plant Cell
Page URI


Launholt D, Merkle T, Houben A, Schulz A, Grasser KD. Arabidopsis chromatin-associated HMGA and HMGB use different nuclear targeting signals and display highly dynamic localization within the nucleus. The Plant Cell. 2006;18(11):2904-2918.
Launholt, D., Merkle, T., Houben, A., Schulz, A., & Grasser, K. D. (2006). Arabidopsis chromatin-associated HMGA and HMGB use different nuclear targeting signals and display highly dynamic localization within the nucleus. The Plant Cell, 18(11), 2904-2918.
Launholt, Dorte, Merkle, Thomas, Houben, Andreas, Schulz, Alexander, and Grasser, Klaus D. 2006. “Arabidopsis chromatin-associated HMGA and HMGB use different nuclear targeting signals and display highly dynamic localization within the nucleus”. The Plant Cell 18 (11): 2904-2918.
Launholt, D., Merkle, T., Houben, A., Schulz, A., and Grasser, K. D. (2006). Arabidopsis chromatin-associated HMGA and HMGB use different nuclear targeting signals and display highly dynamic localization within the nucleus. The Plant Cell 18, 2904-2918.
Launholt, D., et al., 2006. Arabidopsis chromatin-associated HMGA and HMGB use different nuclear targeting signals and display highly dynamic localization within the nucleus. The Plant Cell, 18(11), p 2904-2918.
D. Launholt, et al., “Arabidopsis chromatin-associated HMGA and HMGB use different nuclear targeting signals and display highly dynamic localization within the nucleus”, The Plant Cell, vol. 18, 2006, pp. 2904-2918.
Launholt, D., Merkle, T., Houben, A., Schulz, A., Grasser, K.D.: Arabidopsis chromatin-associated HMGA and HMGB use different nuclear targeting signals and display highly dynamic localization within the nucleus. The Plant Cell. 18, 2904-2918 (2006).
Launholt, Dorte, Merkle, Thomas, Houben, Andreas, Schulz, Alexander, and Grasser, Klaus D. “Arabidopsis chromatin-associated HMGA and HMGB use different nuclear targeting signals and display highly dynamic localization within the nucleus”. The Plant Cell 18.11 (2006): 2904-2918.

48 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

The Linker Histone GH1-HMGA1 Is Involved in Telomere Stability and DNA Damage Repair.
Charbonnel C, Rymarenko O, Da Ines O, Benyahya F, White CI, Butter F, Amiard S., Plant Physiol 177(1), 2018
PMID: 29622687
The Arabidopsis THO/TREX component TEX1 functionally interacts with MOS11 and modulates mRNA export and alternative splicing events.
Sørensen BB, Ehrnsberger HF, Esposito S, Pfab A, Bruckmann A, Hauptmann J, Meister G, Merkl R, Schubert T, Längst G, Melzer M, Grasser M, Grasser KD., Plant Mol Biol 93(3), 2017
PMID: 28004241
The Composition of the Arabidopsis RNA Polymerase II Transcript Elongation Complex Reveals the Interplay between Elongation and mRNA Processing Factors.
Antosz W, Pfab A, Ehrnsberger HF, Holzinger P, Köllen K, Mortensen SA, Bruckmann A, Schubert T, Längst G, Griesenbeck J, Schubert V, Grasser M, Grasser KD., Plant Cell 29(4), 2017
PMID: 28351991
Whole genome sequencing-based association study to unravel genetic architecture of cooked grain width and length traits in rice.
Misra G, Badoni S, Anacleto R, Graner A, Alexandrov N, Sreenivasulu N., Sci Rep 7(1), 2017
PMID: 28963534
Activation of Plant Innate Immunity by Extracellular High Mobility Group Box 3 and Its Inhibition by Salicylic Acid.
Choi HW, Manohar M, Manosalva P, Tian M, Moreau M, Klessig DF., PLoS Pathog 12(3), 2016
PMID: 27007252
DAMPs, MAMPs, and NAMPs in plant innate immunity.
Choi HW, Klessig DF., BMC Plant Biol 16(1), 2016
PMID: 27782807
A Specialized Histone H1 Variant Is Required for Adaptive Responses to Complex Abiotic Stress and Related DNA Methylation in Arabidopsis.
Rutowicz K, Puzio M, Halibart-Puzio J, Lirski M, Kotliński M, Kroteń MA, Knizewski L, Lange B, Muszewska A, Śniegowska-Świerk K, Kościelniak J, Iwanicka-Nowicka R, Buza K, Janowiak F, Żmuda K, Jõesaar I, Laskowska-Kaszub K, Fogtman A, Kollist H, Zielenkiewicz P, Tiuryn J, Siedlecki P, Swiezewski S, Ginalski K, Koblowska M, Archacki R, Wilczynski B, Rapacz M, Jerzmanowski A., Plant Physiol 169(3), 2015
PMID: 26351307
Salinity stress in roots of contrasting barley genotypes reveals time-distinct and genotype-specific patterns for defined proteins.
Witzel K, Matros A, Strickert M, Kaspar S, Peukert M, Mühling KH, Börner A, Mock HP., Mol Plant 7(2), 2014
PMID: 24004485
Open and closed: the roles of linker histones in plants and animals.
Over RS, Michaels SD., Mol Plant 7(3), 2014
PMID: 24270504
The transcript elongation factor SPT4/SPT5 is involved in auxin-related gene expression in Arabidopsis.
Dürr J, Lolas IB, Sørensen BB, Schubert V, Houben A, Melzer M, Deutzmann R, Grasser M, Grasser KD., Nucleic Acids Res 42(7), 2014
PMID: 24497194
HMGB1 in health and disease.
Kang R, Chen R, Zhang Q, Hou W, Wu S, Cao L, Huang J, Yu Y, Fan XG, Yan Z, Sun X, Wang H, Wang Q, Tsung A, Billiar TR, Zeh HJ, Lotze MT, Tang D., Mol Aspects Med 40(), 2014
PMID: 25010388
The ARID-HMG DNA-binding protein AtHMGB15 is required for pollen tube growth in Arabidopsis thaliana.
Xia C, Wang YJ, Liang Y, Niu QK, Tan XY, Chu LC, Chen LQ, Zhang XQ, Ye D., Plant J 79(5), 2014
PMID: 24923357
Arabidopsis DEAD-box RNA helicase UAP56 interacts with both RNA and DNA as well as with mRNA export factors.
Kammel C, Thomaier M, Sørensen BB, Schubert T, Längst G, Grasser M, Grasser KD., PLoS One 8(3), 2013
PMID: 23555998
Nuclear proteome response to cell wall removal in rice (Oryza sativa).
Mujahid H, Tan F, Zhang J, Nallamilli BR, Pendarvis K, Peng Z., Proteome Sci 11(1), 2013
PMID: 23777608
Chimeric repressor of PtSND2 severely affects wood formation in transgenic Populus.
Wang HH, Tang RJ, Liu H, Chen HY, Liu JY, Jiang XN, Zhang HX., Tree Physiol 33(8), 2013
PMID: 23939552
OsPFA-DSP1, a rice protein tyrosine phosphatase, negatively regulates drought stress responses in transgenic tobacco and rice plants.
Liu B, Fan J, Zhang Y, Mu P, Wang P, Su J, Lai H, Li S, Feng D, Wang J, Wang H., Plant Cell Rep 31(6), 2012
PMID: 22218675
The TAL effector PthA4 interacts with nuclear factors involved in RNA-dependent processes including a HMG protein that selectively binds poly(U) RNA.
de Souza TA, Soprano AS, de Lira NP, Quaresma AJ, Pauletti BA, Paes Leme AF, Benedetti CE., PLoS One 7(2), 2012
PMID: 22384209
Screening for in planta protein-protein interactions combining bimolecular fluorescence complementation with flow cytometry.
Berendzen KW, Böhmer M, Wallmeroth N, Peter S, Vesić M, Zhou Y, Tiesler FK, Schleifenbaum F, Harter K., Plant Methods 8(1), 2012
PMID: 22789293
Germline-specific MATH-BTB substrate adaptor MAB1 regulates spindle length and nuclei identity in maize.
Juranič M, Srilunchang KO, Krohn NG, Leljak-Levanic D, Sprunck S, Dresselhaus T., Plant Cell 24(12), 2012
PMID: 23250449
Reduced expression of the DOG1 gene in Arabidopsis mutant seeds lacking the transcript elongation factor TFIIS.
Mortensen SA, Sønderkær M, Lynggaard C, Grasser M, Nielsen KL, Grasser KD., FEBS Lett 585(12), 2011
PMID: 21569772
Unexpected mobility of plant chromatin-associated HMGB proteins.
Merkle T, Grasser KD., Plant Signal Behav 6(6), 2011
PMID: 21543902
The plant-specific family of DNA-binding proteins containing three HMG-box domains interacts with mitotic and meiotic chromosomes.
Pedersen DS, Coppens F, Ma L, Antosch M, Marktl B, Merkle T, Beemster GT, Houben A, Grasser KD., New Phytol 192(3), 2011
PMID: 21781122
NoD: a Nucleolar localization sequence detector for eukaryotic and viral proteins.
Scott MS, Troshin PV, Barton GJ., BMC Bioinformatics 12(), 2011
PMID: 21812952
The transcript elongation factor FACT affects Arabidopsis vegetative and reproductive development and genetically interacts with HUB1/2.
Lolas IB, Himanen K, Grønlund JT, Lynggaard C, Houben A, Melzer M, Van Lijsebettens M, Grasser KD., Plant J 61(4), 2010
PMID: 19947984
AtTRB1, a telomeric DNA-binding protein from Arabidopsis, is concentrated in the nucleolus and shows highly dynamic association with chromatin.
Dvorácková M, Rossignol P, Shaw PJ, Koroleva OA, Doonan JH, Fajkus J., Plant J 61(4), 2010
PMID: 19947985
Nucleocytoplasmic distribution of the Arabidopsis chromatin-associated HMGB2/3 and HMGB4 proteins.
Pedersen DS, Merkle T, Marktl B, Lildballe DL, Antosch M, Bergmann T, Tönsing K, Anselmetti D, Grasser KD., Plant Physiol 154(4), 2010
PMID: 20940346
Habituation to thaxtomin A in hybrid poplar cell suspensions provides enhanced and durable resistance to inhibitors of cellulose synthesis.
Brochu V, Girard-Martel M, Duval I, Lerat S, Grondin G, Domingue O, Beaulieu C, Beaudoin N., BMC Plant Biol 10(), 2010
PMID: 21143977
Nucleocytoplasmic distribution is required for activation of resistance by the potato NB-LRR receptor Rx1 and is balanced by its functional domains.
Slootweg E, Roosien J, Spiridon LN, Petrescu AJ, Tameling W, Joosten M, Pomp R, van Schaik C, Dees R, Borst JW, Smant G, Schots A, Bakker J, Goverse A., Plant Cell 22(12), 2010
PMID: 21177483
Transcript elongation factor TFIIS is involved in arabidopsis seed dormancy.
Grasser M, Kane CM, Merkle T, Melzer M, Emmersen J, Grasser KD., J Mol Biol 386(3), 2009
PMID: 19150360
Phosphoproteomic analysis of nuclei-enriched fractions from Arabidopsis thaliana.
Jones AM, MacLean D, Studholme DJ, Serna-Sanz A, Andreasson E, Rathjen JP, Peck SC., J Proteomics 72(3), 2009
PMID: 19245862
Modulation of nucleocytoplasmic trafficking by retention in cytoplasm or nucleus.
Roth DM, Harper I, Pouton CW, Jans DA., J Cell Biochem 107(6), 2009
PMID: 19507231
Chromosomal high mobility group (HMG) proteins of the HMGB-type occurring in the moss Physcomitrella patens.
Kiilerich B, Stemmer C, Merkle T, Launholt D, Gorr G, Grasser KD., Gene 407(1-2), 2008
PMID: 17980517
Physcomitrella HMGA-type proteins display structural differences compared to their higher plant counterparts.
Lyngaard C, Stemmer C, Stensballe A, Graf M, Gorr G, Decker E, Grasser KD., Biochem Biophys Res Commun 374(4), 2008
PMID: 18662672
The expression level of the chromatin-associated HMGB1 protein influences growth, stress tolerance, and transcriptome in Arabidopsis.
Lildballe DL, Pedersen DS, Kalamajka R, Emmersen J, Houben A, Grasser KD., J Mol Biol 384(1), 2008
PMID: 18822296
Overlapping expression patterns among the genes encoding Arabidopsis chromosomal high mobility group (HMG) proteins.
Launholt D, Grønlund JT, Nielsen HK, Grasser KD., FEBS Lett 581(6), 2007
PMID: 17316617
Molecular characterization of three rice SET-domain proteins
Ding B, Zhu Y, Gao J, Yu Y, Cao K, Shen WH, Dong A., Plant Sci 172(6), 2007
PMID: IND43921221

76 References

Daten bereitgestellt von Europe PubMed Central.

Association of chromatin proteins high mobility group box (HMGB) 1 and HMGB2 with mitotic chromosomes.
Pallier C, Scaffidi P, Chopineau-Proust S, Agresti A, Nordmann P, Bianchi ME, Marechal V., Mol. Biol. Cell 14(8), 2003
PMID: 12925773
Monocytic cells hyperacetylate chromatin protein HMGB1 to redirect it towards secretion.
Bonaldi T, Talamo F, Scaffidi P, Ferrera D, Porto A, Bachi A, Rubartelli A, Agresti A, Bianchi ME., EMBO J. 22(20), 2003
PMID: 14532127
HMG-D and histone H1 alter the local accessibility of nucleosomal DNA.
Ragab A, Travers A., Nucleic Acids Res. 31(24), 2003
PMID: 14654683
HMGB6 from Arabidopsis thaliana specifies a novel type of plant chromosomal HMGB protein.
Grasser KD, Grill S, Duroux M, Launholt D, Thomsen MS, Nielsen BV, Nielsen HK, Merkle T., Biochemistry 43(5), 2004
PMID: 14756567
Measurement of dynamic protein binding to chromatin in vivo, using photobleaching microscopy.
Phair RD, Gorski SA, Misteli T., Meth. Enzymol. 375(), 2004
PMID: 14870680
Quantification of protein-protein and protein-DNA interactions in vivo, using fluorescence recovery after photobleaching.
Carrero G, Crawford E, Th'ng J, de Vries G, Hendzel MJ., Meth. Enzymol. 375(), 2004
PMID: 14870681
A plant dialect of the histone language.
Loidl P., Trends Plant Sci. 9(2), 2004
PMID: 15102374
Network of dynamic interactions between histone H1 and high-mobility-group proteins in chromatin.
Catez F, Yang H, Tracey KJ, Reeves R, Misteli T, Bustin M., Mol. Cell. Biol. 24(10), 2004
PMID: 15121851
Interactions of the basic N-terminal and the acidic C-terminal domains of the maize chromosomal HMGB1 protein.
Thomsen MS, Franssen L, Launholt D, Fojan P, Grasser KD., Biochemistry 43(25), 2004
PMID: 15209498
Dynamic interaction of HMGA1a proteins with chromatin.
Harrer M, Luhrs H, Bustin M, Scheer U, Hock R., J. Cell. Sci. 117(Pt 16), 2004
PMID: 15213251
Global nature of dynamic protein-chromatin interactions in vivo: three-dimensional genome scanning and dynamic interaction networks of chromatin proteins.
Phair RD, Scaffidi P, Elbi C, Vecerova J, Dey A, Ozato K, Brown DT, Hager G, Bustin M, Misteli T., Mol. Cell. Biol. 24(14), 2004
PMID: 15226439
The chromatin remodelling complex FACT associates with actively transcribed regions of the Arabidopsis genome.
Duroux M, Houben A, Ruzicka K, Friml J, Grasser KD., Plant J. 40(5), 2004
PMID: 15546350
FRAP analysis of binding: proper and fitting.
Sprague BL, McNally JG., Trends Cell Biol. 15(2), 2005
PMID: 15695095
The dynamics of histone H1 function in chromatin.
Bustin M, Catez F, Lim JH., Mol. Cell 17(5), 2005
PMID: 15749012
GR and HMGB1 interact only within chromatin and influence each other's residence time.
Agresti A, Scaffidi P, Riva A, Caiolfa VR, Bianchi ME., Mol. Cell 18(1), 2005
PMID: 15808513
Biology of chromatin dynamics.
Hsieh TF, Fischer RL., Annu Rev Plant Biol 56(), 2005
PMID: 15862099
HMG proteins: dynamic players in gene regulation and differentiation.
Bianchi ME, Agresti A., Curr. Opin. Genet. Dev. 15(5), 2005
PMID: 16102963
Systems biology in the cell nucleus.
Gorski S, Misteli T., J. Cell. Sci. 118(Pt 18), 2005
PMID: 16155251
The Arabidopsis genome encodes structurally and functionally diverse HMGB-type proteins.
Grasser M, Lentz A, Lichota J, Merkle T, Grasser KD., J. Mol. Biol. 358(3), 2006
PMID: 16563436
The road much traveled: trafficking in the cell nucleus.
Gorski SA, Dundr M, Misteli T., Curr. Opin. Cell Biol. 18(3), 2006
PMID: 16621498
A topoisomerase IIbeta-mediated dsDNA break required for regulated transcription.
Ju BG, Lunyak VV, Perissi V, Garcia-Bassets I, Rose DW, Glass CK, Rosenfeld MG., Science 312(5781), 2006
PMID: 16794079
High mobility group chromosomal proteins bind to AT-rich tracts flanking plant genes.
Pedersen TJ, Arwood LJ, Spiker S, Guiltinan MJ, Thompson WF., Plant Mol. Biol. 16(1), 1991
PMID: 1840685
High-mobility group protein HMG-I localizes to G/Q- and C-bands of human and mouse chromosomes.
Disney JE, Johnson KR, Magnuson NS, Sylvester SR, Reeves R., J. Cell Biol. 109(5), 1989
PMID: 2808516
A new group of chromatin-associated proteins with a high content of acidic and basic amino acids.
Goodwin GH, Sanders C, Johns EW., Eur. J. Biochem. 38(1), 1973
PMID: 4774120
Nuclear localization of the testis determining gene product SRY.
Poulat F, Girard F, Chevron MP, Goze C, Rebillard X, Calas B, Lamb N, Berta P., J. Cell Biol. 128(5), 1995
PMID: 7876301
Evidence for a shared structural role for HMG1 and linker histones B4 and H1 in organizing chromatin.
Nightingale K, Dimitrov S, Reeves R, Wolffe AP., EMBO J. 15(3), 1996
PMID: 8599938
High-mobility-group chromosomal proteins: architectural components that facilitate chromatin function.
Bustin M, Reeves R., Prog. Nucleic Acid Res. Mol. Biol. 54(), 1996
PMID: 8768072
A plant in vitro system for the nuclear import of proteins.
Merkle T, Leclerc D, Marshallsay C, Nagy F., Plant J. 10(6), 1996
PMID: 9011099
High mobility group 1 protein is not stably associated with the chromosomes of somatic cells.
Falciola L, Spada F, Calogero S, Langst G, Voit R, Grummt I, Bianchi ME., J. Cell Biol. 137(1), 1997
PMID: 9105033
Nuclear accumulation of HMG2 protein is mediated by basic regions interspaced with a long DNA-binding sequence, and retention within the nucleus requires the acidic carboxyl terminus.
Shirakawa H, Tanigawa T, Sugiyama S, Kobayashi M, Terashima T, Yoshida K, Arai T, Yoshida M., Biochemistry 36(20), 1997
PMID: 9166769
Variability in Arabidopsis thaliana chromosomal high-mobility-group-1-like proteins.
Stemmer C, Ritt C, Igloi GL, Grimm R, Grasser KD., Eur. J. Biochem. 250(3), 1997
PMID: 9461286
Linker histones versus HMG1/2: a struggle for dominance?
Zlatanova J, van Holde K., Bioessays 20(7), 1998
PMID: 9723008
Three distinct sub-nuclear populations of HMG-I protein of different properties revealed by co-localization image analysis.
Amirand C, Viari A, Ballini JP, Rezaei H, Beaujean N, Jullien D, Kas E, Debey P., J. Cell. Sci. 111 ( Pt 23)(), 1998
PMID: 9811569
The importin beta/importin 7 heterodimer is a functional nuclear import receptor for histone H1.
Jakel S, Albig W, Kutay U, Bischoff FR, Schwamborn K, Doenecke D, Gorlich D., EMBO J. 18(9), 1999
PMID: 10228156
Histone H1: location and role.
Thomas JO., Curr. Opin. Cell Biol. 11(3), 1999
PMID: 10395563
Identification of a novel phosphorylation site on histone H3 coupled with mitotic chromosome condensation.
Goto H, Tomono Y, Ajiro K, Kosako H, Fujita M, Sakurai M, Okawa K, Iwamatsu A, Okigaki T, Takahashi T, Inagaki M., J. Biol. Chem. 274(36), 1999
PMID: 10464286
Transport between the cell nucleus and the cytoplasm.
Gorlich D, Kutay U., Annu. Rev. Cell Dev. Biol. 15(), 1999
PMID: 10611974
Kinetic analysis of high-mobility-group proteins HMG-1 and HMG-I/Y binding to cholesterol-tagged DNA on a supported lipid monolayer.
Webster CI, Cooper MA, Packman LC, Williams DH, Gray JC., Nucleic Acids Res. 28(7), 2000
PMID: 10710428
pGreen: a versatile and flexible binary Ti vector for Agrobacterium-mediated plant transformation.
Hellens RP, Edwards EA, Leyland NR, Bean S, Mullineaux PM., Plant Mol. Biol. 42(6), 2000
PMID: 10890530
Linker histone binding and displacement: versatile mechanism for transcriptional regulation.
Zlatanova J, Caiafa P, Van Holde K., FASEB J. 14(12), 2000
PMID: 10973918
Rapid exchange of histone H1.1 on chromatin in living human cells.
Lever MA, Th'ng JP, Sun X, Hendzel MJ., Nature 408(6814), 2000
PMID: 11130728
Dynamic binding of histone H1 to chromatin in living cells.
Misteli T, Gunjan A, Hock R, Bustin M, Brown DT., Nature 408(6814), 2000
PMID: 11130729
HMG1 and 2, and related 'architectural' DNA-binding proteins.
Thomas JO, Travers AA., Trends Biochem. Sci. 26(3), 2001
PMID: 11246022
Dynamic analyses of the expression of the HISTONE::YFP fusion protein in arabidopsis show that syncytial endosperm is divided in mitotic domains.
Boisnard-Lorig C, Colon-Carmona A, Bauch M, Hodge S, Doerner P, Bancharel E, Dumas C, Haseloff J, Berger F., Plant Cell 13(3), 2001
PMID: 11251092
HMG-1 enhances HMG-I/Y binding to an A/T-rich enhancer element from the pea plastocyanin gene.
Webster CI, Packman LC, Gray JC., Eur. J. Biochem. 268(11), 2001
PMID: 11389716
Phosphorylation of linker histones regulates ATP-dependent chromatin remodeling enzymes.
Horn PJ, Carruthers LM, Logie C, Hill DA, Solomon MJ, Wade PA, Imbalzano AN, Hansen JC, Peterson CL., Nat. Struct. Biol. 9(4), 2002
PMID: 11887184
Protein dynamics in the nuclear compartment.
Hager GL, Elbi C, Becker M., Curr. Opin. Genet. Dev. 12(2), 2002
PMID: 11893485
Chromatin-remodeling and memory factors. New regulators of plant development.
Reyes JC, Hennig L, Gruissem W., Plant Physiol. 130(3), 2002
PMID: 12427976
The DNA chaperone HMGB1 facilitates ACF/CHRAC-dependent nucleosome sliding.
Bonaldi T, Langst G, Strohner R, Becker PB, Bianchi ME., EMBO J. 21(24), 2002
PMID: 12486007
Rice HMGB1 protein recognizes DNA structures and bends DNA efficiently.
Wu Q, Zhang W, Pwee KH, Kumar PP., Arch. Biochem. Biophys. 411(1), 2003
PMID: 12590928
Priming the nucleosome: a role for HMGB proteins?
Travers AA., EMBO Rep. 4(2), 2003
PMID: 12612600
Characterization of the interaction of wheat HMGa with linear and four-way junction DNAs.
Zhang W, Wu Q, Pwee KH, Jois SD, Kini RM., Biochemistry 42(21), 2003
PMID: 12767244

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

PMID: 17114349
PubMed | Europe PMC

Suchen in

Google Scholar