Role of the cysteine residues in Arabidopsis thaliana cyclophilin CYP20-3 in peptidyl-prolyl cis-trans isomerase and redox-related functions

Laxa M, König J, Dietz K-J, Kandlbinder A (2007)
BIOCHEMICAL JOURNAL 401(1): 287-297.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Abstract / Bemerkung
Cyps (cyclophilins) are ubiquitous proteins of the immunophilin superfamily with proposed functions in protein folding, protein degradation, stress response and signal transduction. Conserved cysteine residues further suggest a roll in redox regulation. In order to get insight into the conformational change mechanism and functional properties of the chloroplast-located CYP20-3, site-directed mutagenized cysteine -> serine variants were generated and analysed for enzymatic and conformational properties under reducing and oxidizing conditions. Compared with the wildtype form, elimination of three out of the four cysteine residues decreased the catalytic efficiency of PIPI (peptidyi-prolyl cis-trans isomerase) activity of the reduced CYP20-3, indicating a regulatory role of dithiol-disulfide transitions in protein function. Oxidation was accompanied by conformational changes with a predominant role in the structural rearrangement of the disulfide bridge formed between Cys(54) and Cys(171). The rather negative E-m (midpoint redox potential) of -319 mV places CYP20-3 into the redox hierarchy of the chloroplast, suggesting the activation of CYP20-3 in the light under conditions of limited acceptor availability for photosynthesis as realized under environmental stress. Chloroplast Prx (peroxiredoxins) were identified as interacting partners of CYP20-3 in a DNA-protection assay. A catalytic role in the reduction of 2-Cys PrxA and 2-Cys PrxB was assigned to Cys(129) and Cys(171). In addition, it was shown that the isomerization and disulfide-reduction activities are two independent functions of CYP20-3 that both are regulated by the redox state of its active centre.
Stichworte
chloroplast; peroxiredoxin; immunophilin; peptidyl-prolyl cis-trans isomerase (PPI); cyclophilin; Arabidopsis thaliana
Erscheinungsjahr
2007
Zeitschriftentitel
BIOCHEMICAL JOURNAL
Band
401
Ausgabe
1
Seite(n)
287-297
ISSN
0264-6021
eISSN
1470-8728
Page URI
https://pub.uni-bielefeld.de/record/1596187

Zitieren

Laxa M, König J, Dietz K-J, Kandlbinder A. Role of the cysteine residues in Arabidopsis thaliana cyclophilin CYP20-3 in peptidyl-prolyl cis-trans isomerase and redox-related functions. BIOCHEMICAL JOURNAL. 2007;401(1):287-297.
Laxa, M., König, J., Dietz, K. - J., & Kandlbinder, A. (2007). Role of the cysteine residues in Arabidopsis thaliana cyclophilin CYP20-3 in peptidyl-prolyl cis-trans isomerase and redox-related functions. BIOCHEMICAL JOURNAL, 401(1), 287-297. https://doi.org/10.1042/BJ20061092
Laxa, Miriam, König, Janine, Dietz, Karl-Josef, and Kandlbinder, Andrea. 2007. “Role of the cysteine residues in Arabidopsis thaliana cyclophilin CYP20-3 in peptidyl-prolyl cis-trans isomerase and redox-related functions”. BIOCHEMICAL JOURNAL 401 (1): 287-297.
Laxa, M., König, J., Dietz, K. - J., and Kandlbinder, A. (2007). Role of the cysteine residues in Arabidopsis thaliana cyclophilin CYP20-3 in peptidyl-prolyl cis-trans isomerase and redox-related functions. BIOCHEMICAL JOURNAL 401, 287-297.
Laxa, M., et al., 2007. Role of the cysteine residues in Arabidopsis thaliana cyclophilin CYP20-3 in peptidyl-prolyl cis-trans isomerase and redox-related functions. BIOCHEMICAL JOURNAL, 401(1), p 287-297.
M. Laxa, et al., “Role of the cysteine residues in Arabidopsis thaliana cyclophilin CYP20-3 in peptidyl-prolyl cis-trans isomerase and redox-related functions”, BIOCHEMICAL JOURNAL, vol. 401, 2007, pp. 287-297.
Laxa, M., König, J., Dietz, K.-J., Kandlbinder, A.: Role of the cysteine residues in Arabidopsis thaliana cyclophilin CYP20-3 in peptidyl-prolyl cis-trans isomerase and redox-related functions. BIOCHEMICAL JOURNAL. 401, 287-297 (2007).
Laxa, Miriam, König, Janine, Dietz, Karl-Josef, and Kandlbinder, Andrea. “Role of the cysteine residues in Arabidopsis thaliana cyclophilin CYP20-3 in peptidyl-prolyl cis-trans isomerase and redox-related functions”. BIOCHEMICAL JOURNAL 401.1 (2007): 287-297.

50 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Protein Promiscuity in H2O2 Signaling.
Young D, Pedre B, Ezeriņa D, De Smet B, Lewandowska A, Tossounian MA, Bodra N, Huang J, Astolfi Rosado L, Van Breusegem F, Messens J., Antioxid Redox Signal 30(10), 2019
PMID: 29635930
Versatility of Cyclophilins in Plant Growth and Survival: A Case Study in Arabidopsis.
Barbosa Dos Santos I, Park SW., Biomolecules 9(1), 2019
PMID: 30634678
Treatment of Common Sunflower (Helianthus annus L.) Seeds with Radio-frequency Electromagnetic Field and Cold Plasma Induces Changes in Seed Phytohormone Balance, Seedling Development and Leaf Protein Expression.
Mildažienė V, Aleknavičiūtė V, Žūkienė R, Paužaitė G, Naučienė Z, Filatova I, Lyushkevich V, Haimi P, Tamošiūnė I, Baniulis D., Sci Rep 9(1), 2019
PMID: 31015543
Enzyme activity and structural features of three single-domain phloem cyclophilins from Brassica napus.
Hanhart P, Falke S, Garbe M, Rose V, Thieß M, Betzel C, Kehr J., Sci Rep 9(1), 2019
PMID: 31249367
One-pot synthesis of bioactive cyclopentenones from α-linolenic acid and docosahexaenoic acid.
Maynard D, Müller SM, Hahmeier M, Löwe J, Feussner I, Gröger H, Viehhauser A, Dietz KJ., Bioorg Med Chem 26(7), 2018
PMID: 28818464
Bioinformatic and expression analysis of the Brassica napus L. cyclophilins.
Hanhart P, Thieß M, Amari K, Bajdzienko K, Giavalisco P, Heinlein M, Kehr J., Sci Rep 7(1), 2017
PMID: 28473712
Overexpressing the Sedum alfredii Cu/Zn Superoxide Dismutase Increased Resistance to Oxidative Stress in Transgenic Arabidopsis.
Li Z, Han X, Song X, Zhang Y, Jiang J, Han Q, Liu M, Qiao G, Zhuo R., Front Plant Sci 8(), 2017
PMID: 28659953
The redox-sensitive module of cyclophilin 20-3, 2-cysteine peroxiredoxin and cysteine synthase integrates sulfur metabolism and oxylipin signaling in the high light acclimation response.
Müller SM, Wang S, Telman W, Liebthal M, Schnitzer H, Viehhauser A, Sticht C, Delatorre C, Wirtz M, Hell R, Dietz KJ., Plant J 91(6), 2017
PMID: 28644561
Cyclophilin 20-3 is positioned as a regulatory hub between light-dependent redox and 12-oxo-phytodienoic acid signaling.
Cheong H, Barbosa Dos Santos I, Liu W, Gosse HN, Park SW., Plant Signal Behav 12(9), 2017
PMID: 28805482
Chloroplast immunophilins.
Tomašić Paić A, Fulgosi H., Protoplasma 253(2), 2016
PMID: 25963286
Nuclear thiol redox systems in plants.
Delorme-Hinoux V, Bangash SA, Meyer AJ, Reichheld JP., Plant Sci 243(), 2016
PMID: 26795153
Characterization of the Arabidopsis thaliana 2-Cys peroxiredoxin interactome.
Cerveau D, Kraut A, Stotz HU, Mueller MJ, Couté Y, Rey P., Plant Sci 252(), 2016
PMID: 27717466
Characterization of Peptidyl-Prolyl Cis-Trans Isomerase- and Calmodulin-Binding Activity of a Cytosolic Arabidopsis thaliana Cyclophilin AtCyp19-3.
Kaur G, Singh S, Singh H, Chawla M, Dutta T, Kaur H, Bender K, Snedden WA, Kapoor S, Pareek A, Singh P., PLoS One 10(8), 2015
PMID: 26317213
The significance of cysteine synthesis for acclimation to high light conditions.
Speiser A, Haberland S, Watanabe M, Wirtz M, Dietz KJ, Saito K, Hell R., Front Plant Sci 5(), 2014
PMID: 25653656
Alleviation of methyl viologen-mediated oxidative stress by Brassica juncea annexin-3 in transgenic Arabidopsis.
Dalal A, Kumar A, Yadav D, Gudla T, Viehhauser A, Dietz KJ, Kirti PB., Plant Sci 219-220(), 2014
PMID: 24576759
Characterization of three Arabidopsis thaliana immunophilin genes involved in the plant defense response against Pseudomonas syringae.
Pogorelko GV, Mokryakova M, Fursova OV, Abdeeva I, Piruzian ES, Bruskin SA., Gene 538(1), 2014
PMID: 24440291
Arabidopsis scaffold protein RACK1A interacts with diverse environmental stress and photosynthesis related proteins.
Kundu N, Dozier U, Deslandes L, Somssich IE, Ullah H., Plant Signal Behav 8(5), 2013
PMID: 23435172
A redox 2-Cys mechanism regulates the catalytic activity of divergent cyclophilins.
Campos BM, Sforça ML, Ambrosio AL, Domingues MN, Brasil de Souza Tde A, Barbosa JA, Paes Leme AF, Perez CA, Whittaker SB, Murakami MT, Zeri AC, Benedetti CE., Plant Physiol 162(3), 2013
PMID: 23709667
The conformational bases for the two functionalities of 2-cysteine peroxiredoxins as peroxidase and chaperone.
König J, Galliardt H, Jütte P, Schäper S, Dittmann L, Dietz KJ., J Exp Bot 64(11), 2013
PMID: 23828546
Implication of cysteine residues in the selection of oxorhenium inhibitors of cyclophilin hCyp18.
Clavaud C, Le Gal J, Thai R, Dugave C., Metallomics 4(2), 2012
PMID: 22273684
Proteins of diverse function and subcellular location are lysine acetylated in Arabidopsis.
Finkemeier I, Laxa M, Miguet L, Howden AJ, Sweetlove LJ., Plant Physiol 155(4), 2011
PMID: 21311031
The disulfide proteome and other reactive cysteine proteomes: analysis and functional significance.
Lindahl M, Mata-Cabana A, Kieselbach T., Antioxid Redox Signal 14(12), 2011
PMID: 21275844
Peroxiredoxins in plants and cyanobacteria.
Dietz KJ., Antioxid Redox Signal 15(4), 2011
PMID: 21194355
Function of antioxidant enzymes and metabolites during maturation of pea fruits.
Matamoros MA, Loscos J, Dietz KJ, Aparicio-Tejo PM, Becana M., J Exp Bot 61(1), 2010
PMID: 19822534
Identification of Conus peptidylprolyl cis-trans isomerases (PPIases) and assessment of their role in the oxidative folding of conotoxins.
Safavi-Hemami H, Bulaj G, Olivera BM, Williamson NA, Purcell AW., J Biol Chem 285(17), 2010
PMID: 20147296
Mg protoporphyrin monomethylester cyclase deficiency and effects on tetrapyrrole metabolism in different light conditions.
Peter E, Rothbart M, Oelze ML, Shalygo N, Dietz KJ, Grimm B., Plant Cell Physiol 51(7), 2010
PMID: 20460500
A cyclophilin A CPR1 overexpression enhances stress acquisition in Saccharomyces cerevisiae.
Kim IS, Kim HY, Shin SY, Kim YS, Lee DH, Park KM, Yoon HS., Mol Cells 29(6), 2010
PMID: 20496120
The Xanthomonas citri effector protein PthA interacts with citrus proteins involved in nuclear transport, protein folding and ubiquitination associated with DNA repair.
Domingues MN, De Souza TA, Cernadas RA, de Oliveira ML, Docena C, Farah CS, Benedetti CE., Mol Plant Pathol 11(5), 2010
PMID: 20696004
Hubs and bottlenecks in plant molecular signalling networks.
Dietz KJ, Jacquot JP, Harris G., New Phytol 188(4), 2010
PMID: 20958306
Typical 2-Cys peroxiredoxins--modulation by covalent transformations and noncovalent interactions.
Aran M, Ferrero DS, Pagano E, Wolosiuk RA., FEBS J 276(9), 2009
PMID: 19476489
Redox characterization of human cyclophilin D: identification of a new mammalian mitochondrial redox sensor?
Linard D, Kandlbinder A, Degand H, Morsomme P, Dietz KJ, Knoops B., Arch Biochem Biophys 491(1-2), 2009
PMID: 19735641
Multiple redox and non-redox interactions define 2-Cys peroxiredoxin as a regulatory hub in the chloroplast.
Muthuramalingam M, Seidel T, Laxa M, Nunes de Miranda SM, Gärtner F, Ströher E, Kandlbinder A, Dietz KJ., Mol Plant 2(6), 2009
PMID: 19995730
Redox signal integration: from stimulus to networks and genes.
Dietz KJ., Physiol Plant 133(3), 2008
PMID: 18429942
NADPH-dependent thioredoxin reductase and 2-Cys peroxiredoxins are needed for the protection of Mg-protoporphyrin monomethyl ester cyclase.
Stenbaek A, Hansson A, Wulff RP, Hansson M, Dietz KJ, Jensen PE., FEBS Lett 582(18), 2008
PMID: 18625226
A cyclophilin links redox and light signals to cysteine biosynthesis and stress responses in chloroplasts.
Dominguez-Solis JR, He Z, Lima A, Ting J, Buchanan BB, Luan S., Proc Natl Acad Sci U S A 105(42), 2008
PMID: 18845687
Function of ROC4 in the efficient repair of photodamaged photosystem II in Arabidopsis.
Cai W, Ma J, Guo J, Zhang L., Photochem Photobiol 84(6), 2008
PMID: 19067955
Redox regulation and antioxidative defence in Arabidopsis leaves viewed from a systems biology perspective.
Wormuth D, Heiber I, Shaikali J, Kandlbinder A, Baier M, Dietz KJ., J Biotechnol 129(2), 2007
PMID: 17207878
The redox imbalanced mutants of Arabidopsis differentiate signaling pathways for redox regulation of chloroplast antioxidant enzymes.
Heiber I, Ströher E, Raatz B, Busse I, Kahmann U, Bevan MW, Dietz KJ, Baier M., Plant Physiol 143(4), 2007
PMID: 17337533
Comparative quantitative proteomics to investigate the remodeling of bioenergetic pathways under iron deficiency in Chlamydomonas reinhardtii.
Naumann B, Busch A, Allmer J, Ostendorf E, Zeller M, Kirchhoff H, Hippler M., Proteomics 7(21), 2007
PMID: 17922516

47 References

Daten bereitgestellt von Europe PubMed Central.

The Arabidopsis cyclophilin gene family.
Romano PG, Horton P, Gray JE., Plant Physiol. 134(4), 2004
PMID: 15051864
Cyclophilin: a specific cytosolic binding protein for cyclosporin A.
Handschumacher RE, Harding MW, Rice J, Drugge RJ, Speicher DW., Science 226(4674), 1984
PMID: 6238408
Plant immunophilins: functional versatility beyond protein maturation.
Romano P, Gray J, Horton P, Luan S., New Phytol. 166(3), 2005
PMID: 15869639
A chloroplast FKBP interacts with and affects the accumulation of Rieske subunit of cytochrome bf complex.
Gupta R, Mould RM, He Z, Luan S., Proc. Natl. Acad. Sci. U.S.A. 99(24), 2002
PMID: 12424338
Isomerase and chaperone activity of prolyl isomerase in the folding of carbonic anhydrase.
Freskgard PO, Bergenhem N, Jonsson BH, Svensson M, Carlsson U., Science 258(5081), 1992
PMID: 1357751
The dodo gene family encodes a novel protein involved in signal transduction and protein folding.
Maleszka R, Lupas A, Hanes SD, Miklos GL., Gene 203(2), 1997
PMID: 9426238
Regulation of the tyrosine kinase Itk by the peptidyl-prolyl isomerase cyclophilin A.
Brazin KN, Mallis RJ, Fulton DB, Andreotti AH., Proc. Natl. Acad. Sci. U.S.A. 99(4), 2002
PMID: 11830645
Cyclophilin A is a secreted growth factor induced by oxidative stress.
Jin ZG, Melaragno MG, Liao DF, Yan C, Haendeler J, Suh YA, Lambeth JD, Berk BC., Circ. Res. 87(9), 2000
PMID: 11055983
pCyP B: a chloroplast-localized, heat shock-responsive cyclophilin from fava bean.
Luan S, Lane WS, Schreiber SL., Plant Cell 6(6), 1994
PMID: 8061522
Isolation and characterization of a cDNA corresponding to a stress-activated cyclophilin gene in Solanum commersonii
Meza-Zepeda L. A., Baudo M. M., Palva E. T., Heino P.., 1998
Regulation of vegetative phase change in Arabidopsis thaliana by cyclophilin 40.
Berardini TZ, Bollman K, Sun H, Poethig RS., Science 291(5512), 2001
PMID: 11264535
A cyclophilin functions in pre-mRNA splicing.
Horowitz DS, Lee EJ, Mabon SA, Misteli T., EMBO J. 21(3), 2002
PMID: 11823439
Two protein-protein interaction sites on the spliceosome-associated human cyclophilin CypH.
Ingelfinger D, Gothel SF, Marahiel MA, Reidt U, Ficner R, Luhrmann R, Achsel T., Nucleic Acids Res. 31(16), 2003
PMID: 12907720
Cyclophilin a binds to peroxiredoxins and activates its peroxidase activity.
Lee SP, Hwang YS, Kim YJ, Kwon KS, Kim HJ, Kim K, Chae HZ., J. Biol. Chem. 276(32), 2001
PMID: 11390385
Cloning and characterization of a 2-Cys peroxiredoxin from Pisum sativum.
Bernier-Villamor L, Navarro E, Sevilla F, Lazaro JJ., J. Exp. Bot. 55(406), 2004
PMID: 15333640
Divergent light-, ascorbate-, and oxidative stress-dependent regulation of expression of the peroxiredoxin gene family in Arabidopsis.
Horling F, Lamkemeyer P, Konig J, Finkemeier I, Kandlbinder A, Baier M, Dietz KJ., Plant Physiol. 131(1), 2003
PMID: 12529539
Peroxiredoxins
Hofmann B., Hecht H. J., Flohe L.., 2002
Reaction mechanism of plant 2-Cys peroxiredoxin. Role of the C terminus and the quaternary structure.
Konig J, Lotte K, Plessow R, Brockhinke A, Baier M, Dietz KJ., J. Biol. Chem. 278(27), 2003
PMID: 12702727
Plant peroxiredoxins.
Dietz KJ., Annu Rev Plant Biol 54(), 2003
PMID: 14502986
The function of peroxiredoxins in plant organelle redox metabolism.
Dietz KJ, Jacob S, Oelze ML, Laxa M, Tognetti V, de Miranda SM, Baier M, Finkemeier I., J. Exp. Bot. 57(8), 2006
PMID: 16606633
The mitochondrial type II peroxiredoxin F is essential for redox homeostasis and root growth of Arabidopsis thaliana under stress.
Finkemeier I, Goodman M, Lamkemeyer P, Kandlbinder A, Sweetlove LJ, Dietz KJ., J. Biol. Chem. 280(13), 2005
PMID: 15632145
Cloning and characterization of chloroplast and cytosolic forms of cyclophilin from Arabidopsis thaliana.
Lippuner V, Chou IT, Scott SV, Ettinger WF, Theg SM, Gasser CS., J. Biol. Chem. 269(11), 1994
PMID: 8132503
Proteome map of the chloroplast lumen of Arabidopsis thaliana.
Schubert M, Petersson UA, Haas BJ, Funk C, Schroder WP, Kieselbach T., J. Biol. Chem. 277(10), 2001
PMID: 11719511
Comprehensive survey of proteins targeted by chloroplast thioredoxin.
Motohashi K, Kondoh A, Stumpp MT, Hisabori T., Proc. Natl. Acad. Sci. U.S.A. 98(20), 2001
PMID: 11553771
Chloroplast cyclophilin is a target protein of thioredoxin. Thiol modulation of the peptidyl-prolyl cis-trans isomerase activity.
Motohashi K, Koyama F, Nakanishi Y, Ueoka-Nakanishi H, Hisabori T., J. Biol. Chem. 278(34), 2003
PMID: 12923164
Activation of active-site cysteine residues in the peroxiredoxin-type tryparedoxin peroxidase of Crithidia fasciculata.
Montemartini M, Kalisz HM, Hecht HJ, Steinert P, Flohe L., Eur. J. Biochem. 264(2), 1999
PMID: 10491099
The plant-specific function of 2-Cys peroxiredoxin-mediated detoxification of peroxides in the redox-hierarchy of photosynthetic electron flux.
Konig J, Baier M, Horling F, Kahmann U, Harris G, Schurmann P, Dietz KJ., Proc. Natl. Acad. Sci. U.S.A. 99(8), 2002
PMID: 11929977
Thioredoxin peroxidase in the Cyanobacterium Synechocystis sp. PCC 6803.
Yamamoto H, Miyake C, Dietz KJ, Tomizawa K, Murata N, Yokota A., FEBS Lett. 447(2-3), 1999
PMID: 10214959
Characterization of plastidial thioredoxins from Arabidopsis belonging to the new y-type.
Collin V, Lamkemeyer P, Miginiac-Maslow M, Hirasawa M, Knaff DB, Dietz KJ, Issakidis-Bourguet E., Plant Physiol. 136(4), 2004
PMID: 15531707
Conformational specificity of chymotrypsin toward proline-containing substrates.
Fischer G, Bang H, Berger E, Schellenberger A., Biochim. Biophys. Acta 791(1), 1984
PMID: 6498206
Oxidation-reduction properties of chloroplast thioredoxins, ferredoxin:thioredoxin reductase, and thioredoxin f-regulated enzymes.
Hirasawa M, Schurmann P, Jacquot JP, Manieri W, Jacquot P, Keryer E, Hartman FC, Knaff DB., Biochemistry 38(16), 1999
PMID: 10213627
Ultraviolet fluorescence of the aromatic amino acids.
TEALE FW, WEBER G., Biochem. J. 65(3), 1957
PMID: 13412650
Fluorescence and the location of tryptophan residues in protein molecules.
Burstein EA, Vedenkina NS, Ivkova MN., Photochem. Photobiol. 18(4), 1973
PMID: 4583619
The function of the chloroplast 2-cysteine peroxiredoxin in peroxide detoxification and its regulation.
Dietz KJ, Horling F, Konig J, Baier M., J. Exp. Bot. 53(372), 2002
PMID: 11997378
Biochemical and structural characterization of a divergent loop cyclophilin from Caenorhabditis elegans.
Dornan J, Page AP, Taylor P, Wu Sy, Winter AD, Husi H, Walkinshaw MD., J. Biol. Chem. 274(49), 1999
PMID: 10574961
Thioredoxin affinity chromatography: a useful method for further understanding the thioredoxin network.
Hisabori T, Hara S, Fujii T, Yamazaki D, Hosoya-Matsuda N, Motohashi K., J. Exp. Bot. 56(416), 2005
PMID: 15851412
Poplar peroxiredoxin Q. A thioredoxin-linked chloroplast antioxidant functional in pathogen defense.
Rouhier N, Gelhaye E, Gualberto JM, Jordy MN, De Fay E, Hirasawa M, Duplessis S, Lemaire SD, Frey P, Martin F, Manieri W, Knaff DB, Jacquot JP., Plant Physiol. 134(3), 2004
PMID: 14976238
Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes.
Liu J, Farmer JD Jr, Lane WS, Friedman J, Weissman I, Schreiber SL., Cell 66(4), 1991
PMID: 1715244
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 16928193
PubMed | Europe PMC

Suchen in

Google Scholar