A chemically induced new pea (Pisum sativum) mutant SGECd(t) with increased tolerance to, and accumulation of, cadmium

Tsyganov VE, Belimov AA, Borisov AY, Safronova VI, Georgi M, Dietz K-J, Tikhonovich IA (2007)
Annals of Botany 99(2): 227-237.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ; ; ; ;
Abstract / Bemerkung
Background and Aims To date, there are no crop mutants described in the literature that display both Cd accumulation and tolerance. In the present study a unique pea (Pisum sativum) mutant SGECd(t) with increased Cd tolerance and accumulation was isolated and characterized. Methods Ethylmethane sulfonate mutagenesis of the pea line SGE was used to obtain the mutant. Screening for Cd-tolerant seedlings in the M-2 generation was performed using hydroponics in the presence of 6 mu(M) CdCl2. Hybridological analysis was used to identify the inheritance of the mutant phenotype. Several physiological and biochemical characteristics of SGECd(t) were studied in hydroponic experiments in the presence of 3 mu(M) CdCl2, and elemental analysis was conducted. Key Results The mutant SGECd(t) was characterized as having a monogenic inheritance and a recessive phenotype. It showed increased Cd concentrations in roots and shoots but no obvious morphological defects, demonstrating its capability to cope well with increased Cd levels in its tissues. The enhanced Cd accumulation in the mutant was accompanied by maintenance of homeostasis of shoot Ca, Mg, Zn and Mn contents, and root Ca and Mg contents. Through the application of La+3 and the exclusion of Ca from the nutrient solution, maintenance of nutrient homeostasis in Cd-stressed SGECd(t) was shown to contribute to the increased Cd tolerance. Control plants of the mutant (i.e. no Cd treatment) had elevated concentrations of glutathione (GSH) in the roots. Through measurements of chitinase and guaiacol-dependent peroxidase activities, as well as proline and non-protein thiol (NPT) levels. it was shown that there were lower levels of Cd stress both in roots and shoots of SGECd(t). Accumulation of phytochelatins [(PCcalculated) = (NPT) - (GSH)] could be excluded as a cause of the increased Cd tolerance in the mutant. Conclusions The SGECd(t) mutant represents a novel and unique model to study adaptation of plants to toxic heavy metal concentrations.
Erscheinungsjahr
Zeitschriftentitel
Annals of Botany
Band
99
Ausgabe
2
Seite(n)
227-237
ISSN
eISSN
PUB-ID

Zitieren

Tsyganov VE, Belimov AA, Borisov AY, et al. A chemically induced new pea (Pisum sativum) mutant SGECd(t) with increased tolerance to, and accumulation of, cadmium. Annals of Botany. 2007;99(2):227-237.
Tsyganov, V. E., Belimov, A. A., Borisov, A. Y., Safronova, V. I., Georgi, M., Dietz, K. - J., & Tikhonovich, I. A. (2007). A chemically induced new pea (Pisum sativum) mutant SGECd(t) with increased tolerance to, and accumulation of, cadmium. Annals of Botany, 99(2), 227-237. doi:10.1093/aob/mcl261
Tsyganov, V. E., Belimov, A. A., Borisov, A. Y., Safronova, V. I., Georgi, M., Dietz, K. - J., and Tikhonovich, I. A. (2007). A chemically induced new pea (Pisum sativum) mutant SGECd(t) with increased tolerance to, and accumulation of, cadmium. Annals of Botany 99, 227-237.
Tsyganov, V.E., et al., 2007. A chemically induced new pea (Pisum sativum) mutant SGECd(t) with increased tolerance to, and accumulation of, cadmium. Annals of Botany, 99(2), p 227-237.
V.E. Tsyganov, et al., “A chemically induced new pea (Pisum sativum) mutant SGECd(t) with increased tolerance to, and accumulation of, cadmium”, Annals of Botany, vol. 99, 2007, pp. 227-237.
Tsyganov, V.E., Belimov, A.A., Borisov, A.Y., Safronova, V.I., Georgi, M., Dietz, K.-J., Tikhonovich, I.A.: A chemically induced new pea (Pisum sativum) mutant SGECd(t) with increased tolerance to, and accumulation of, cadmium. Annals of Botany. 99, 227-237 (2007).
Tsyganov, Viktor E., Belimov, Andrei A., Borisov, Alexey Y., Safronova, Vera I., Georgi, Manfred, Dietz, Karl-Josef, and Tikhonovich, Igor A. “A chemically induced new pea (Pisum sativum) mutant SGECd(t) with increased tolerance to, and accumulation of, cadmium”. Annals of Botany 99.2 (2007): 227-237.

5 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Aluminum exclusion from root zone and maintenance of nutrient uptake are principal mechanisms of Al tolerance in Pisum sativum L.
Kichigina NE, Puhalsky JV, Shaposhnikov AI, Azarova TS, Makarova NM, Loskutov SI, Safronova VI, Tikhonovich IA, Vishnyakova MA, Semenova EV, Kosareva IA, Belimov AA., Physiol Mol Biol Plants 23(4), 2017
PMID: 29158634
Defective copper transport in the copt5 mutant affects cadmium tolerance.
Carrió-Seguí A, Garcia-Molina A, Sanz A, Peñarrubia L., Plant Cell Physiol 56(3), 2015
PMID: 25432970
The cadmium-tolerant pea (Pisum sativum L.) mutant SGECdt is more sensitive to mercury: assessing plant water relations.
Belimov AA, Dodd IC, Safronova VI, Malkov NV, Davies WJ, Tikhonovich IA., J Exp Bot 66(8), 2015
PMID: 25694548
Cellular response of pea plants to cadmium toxicity: cross talk between reactive oxygen species, nitric oxide, and calcium.
Rodríguez-Serrano M, Romero-Puertas MC, Pazmiño DM, Testillano PS, Risueño MC, Del Río LA, Sandalio LM., Plant Physiol 150(1), 2009
PMID: 19279198

47 References

Daten bereitgestellt von Europe PubMed Central.

Enzymes regulating the accumulation of active oxygen species during the hypersensitive reaction of bean to Pseudomonas syringae pv
Adam AL, Bestwick CS, Barna B, Mansfield JW., 1995
Rapid determination of free proline for water stress studies
Bates LS, Waldren RP, Teare ID., 1973
Genetic variability in tolerance to cadmium and accumulation of heavy metals in pea (Pisum sativum L.).
Belimov AA, Safronova VI, Tsyganov VE, Borisov AY, Kozhemyakov AP, Stepanok VV, Martenson AM, Gianinazzi-Pearson V, Tikhonovich IA., Euphytica 131(1), 2003
PMID: IND43614974
Genetic basis of Cd tolerance and hyperaccumulation in Arabidopsis halleri
Bert V, Meerts P, Saumitou-Laprade P, Salis P, Gruber W, Verbruggen N., 2003
Differential toxicity of heavy metals is partly related to a loss of preferential extraplasmic compartmentation: a comparison of Cd-, Mo-, Ni- and Zn-stress
Brune A, Urbach W, Dietz K-J., 1995
Possible roles of zinc in protecting plant cells from damage by reactive oxygen species
Cakmak I., 2000
Tolerance to toxic metals by a gene family of phytochelatin synthases from plants and yeast.
Clemens S, Kim EJ, Neumann D, Schroeder JI., EMBO J. 18(12), 1999
PMID: 10369673
Phytochelatins in Cadmium-Sensitive and Cadmium-Tolerant Silene vulgaris (Chain Length Distribution and Sulfide Incorporation).
De Knecht JA, Van Dillen M, Koevoets P, Schat H, Verkleij J, Ernst W., Plant Physiol. 104(1), 1994
PMID: 12232077
A metal-accumulator mutant of Arabidopsis thaliana.
Delhaize E., Plant Physiol. 111(3), 1996
PMID: 8754685
Characterization of the epidermis of barley primary leaves. 1. Isolation of epidermal protoplasts
Dietz K-J, Schramm M, Betz M, Busch H, Zink C, Martinoia E., 1992
Alleviation of cadmium toxicity on maize seedlings by calcium
El-Enany AE., 1995
Alterations in Cd-induced gene expression under nitrogen deficiency in Hordeum vulgare
Finkemeier I, Kluge C, Metwally A, Georgi M, Grotjohann N, Dietz K-J., 2003
Improvement of the selection value of gene dgl through recombination
Gottschalk W., 1987
Excessive aluminium accumulation in pea mutant E107 (brz)
Guinel FC, LaRue TA., 1993
Phytochelatin synthase genes from Arabidopsis and the yeast Schizosaccharomyces pombe.
Ha SB, Smith AP, Howden R, Dietrich WM, Bugg S, O'Connell MJ, Goldsbrough PB, Cobbett CS., Plant Cell 11(6), 1999
PMID: 10368185
Different effects of calcium and lanthanum on the expression of phytochelatin synthase gene and cadmium absorption in Latucca sativa
He Z, Li J, Zhang H, Ma M., 2005
A cadmium-sensitive, glutathione-deficient mutant of Arabidopsis thaliana.
Howden R, Andersen CR, Goldsbrough PB, Cobbett CS., Plant Physiol. 107(4), 1995
PMID: 7770518
Cadmium-sensitive, cad1 mutants of Arabidopsis thaliana are phytochelatin deficient.
Howden R, Goldsbrough PB, Andersen CR, Cobbett CS., Plant Physiol. 107(4), 1995
PMID: 7770517
Relative effectiveness of calcium and magnesium in the alleviation of rhizotoxicity in wheat induced by copper, zinc, aluminum, sodium, and low pH
Kinraide TB, Perler JF, Parker DR., 2004
Overexpression of Arabidopsis phytochelatin synthase paradoxically leads to hypersensitivity to cadmium stress.
Lee S, Moon JS, Ko TS, Petros D, Goldsbrough PB, Korban SS., Plant Physiol. 131(2), 2003
PMID: 12586889
Functional cloning and characterization of a plant efflux carrier for multidrug and heavy metal detoxification.
Li L, He Z, Pandey GK, Tsuchiya T, Luan S., J. Biol. Chem. 277(7), 2001
PMID: 11739388
Cadmium accumulation in populations of Thlaspi caerulescens and Thlaspi goesingense
Lombi E, Zhao FJ, Dunham SJ, McGrath SP., 2000
Genotypic variation of the response to cadmium toxicity in Pisum sativum L.
Metwally A, Safronova VI, Belimov AA, Dietz KJ., J. Exp. Bot. 56(409), 2004
PMID: 15533881
The plant P1B-type ATPase AtHMA4 transports Zn and Cd and plays a role in detoxification of transition metals supplied at elevated levels.
Mills RF, Francini A, Ferreira da Rocha PS, Baccarini PJ, Aylett M, Krijger GC, Williams LE., FEBS Lett. 579(3), 2005
PMID: 15670847
Ascorbate and glutathione: keeping active oxygen under control
Noctor G, Foyer CH., 1998
Heavy metal toxicity: cadmium permeates through calcium channels and disturbs the plant water status.
Perfus-Barbeoch L, Leonhardt N, Vavasseur A, Forestier C., Plant J. 32(4), 2002
PMID: 12445125
Functional activity and role of cation-efflux family members in Ni hyperaccumulation in Thlaspi goesingense.
Persans MW, Nieman K, Salt DE., Proc. Natl. Acad. Sci. U.S.A. 98(17), 2001
PMID: 11481436
Cadmium effect on oxidative metabolism of pea (Pisum sativum L.) roots: imaging of reactive oxygen species and nitric oxide accumulation in vivo
Rodriguez-Serano M, Romero-Puertas MC, Zabalza A, Corpas FJ, Gomez M, del LA., 2006
Cadmium-induced changes in the growth and oxidative metabolism of pea plants.
Sandalio LM, Dalurzo HC, Gomez M, Romero-Puertas MC, del Rio LA., J. Exp. Bot. 52(364), 2001
PMID: 11604450
A general model for the genetic control of copper tolerance in Silene vulgaris: evidence from crosses between plants from different tolerant populations
Schat H, Kuiper E, Ten WM, Vooijs R., 1993
Heavy metal-induced accumulation of free proline in a metal-tolerant and a nontolerant ecotype of Silene vulgaris
Schat H, Sharma SS, Vooijs R., 1997
Engineering tolerance and accumulation of lead and cadmium in transgenic plants.
Song WY, Sohn EJ, Martinoia E, Lee YJ, Yang YY, Jasinski M, Forestier C, Hwang I, Lee Y., Nat. Biotechnol. 21(8), 2003
PMID: 12872132
A novel family of cys-rich membrane proteins mediates cadmium resistance in Arabidopsis.
Song WY, Martinoia E, Lee J, Kim D, Kim DY, Vogt E, Shim D, Choi KS, Hwang I, Lee Y., Plant Physiol. 135(2), 2004
PMID: 15181212
Overexpression of a novel Arabidopsis gene related to putative zinc-transporter genes from animals can lead to enhanced zinc resistance and accumulation.
van der Zaal BJ, Neuteboom LW, Pinas JE, Chardonnens AN, Schat H, Verkleij JA, Hooykaas PJ., Plant Physiol. 119(3), 1999
PMID: 10069843
Copper-sensitive mutant of Arabidopsis thaliana.
van Vliet C, Anderson CR, Cobbett CS., Plant Physiol. 109(3), 1995
PMID: 8552718
Overexpression of AtHMA4 enhances root-to-shoot translocation of zinc and cadmium and plant metal tolerance.
Verret F, Gravot A, Auroy P, Leonhardt N, David P, Nussaume L, Vavasseur A, Richaud P., FEBS Lett. 576(3), 2004
PMID: 15498553
Calcium channels in higher plants
White PJ., 2000
Calcium in plants.
White PJ, Broadley MR., Ann. Bot. 92(4), 2003
PMID: 12933363
Dye-labeled substrates for the assay and detection of chitinase and lysozyme activity
Wirth SJ, Wolf GA., 1990
Co-segregation analysis of cadmium and zinc accumulation in Thaspi caerulescens interecotypic crosses
Zha HG, Jiang RF, Zhao EJ, Vooijs R, Schat H, Barker JHA., 2004
Characteristics of cadmium uptake in two contrasting ecotypes of the hyperaccumulator Thlaspi caerulescens.
Zhao FJ, Hamon RE, Lombi E, McLaughlin MJ, McGrath SP., J. Exp. Bot. 53(368), 2002
PMID: 11847252

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 17259229
PubMed | Europe PMC

Suchen in

Google Scholar