Segment specificity of load signal processing depends on walking direction in the stick insect leg muscle control system

Akay T, Ludwar BC, Goeritz ML, Schmitz J, Bueschges A (2007)
JOURNAL OF NEUROSCIENCE 27(12): 3285-3294.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Akay, Turgay; Ludwar, Bjoern Ch.; Goeritz, Marie L.; Schmitz, JosefUniBi ; Bueschges, Ansgar
Stichworte
walking direction; campaniform sensilla; reflex reversal; sensory feedback; pattern; locomotion; generation
Erscheinungsjahr
2007
Zeitschriftentitel
JOURNAL OF NEUROSCIENCE
Band
27
Ausgabe
12
Seite(n)
3285-3294
ISSN
0270-6474
eISSN
1529-2401
Page URI
https://pub.uni-bielefeld.de/record/1595004

Zitieren

Akay T, Ludwar BC, Goeritz ML, Schmitz J, Bueschges A. Segment specificity of load signal processing depends on walking direction in the stick insect leg muscle control system. JOURNAL OF NEUROSCIENCE. 2007;27(12):3285-3294.
Akay, T., Ludwar, B. C., Goeritz, M. L., Schmitz, J., & Bueschges, A. (2007). Segment specificity of load signal processing depends on walking direction in the stick insect leg muscle control system. JOURNAL OF NEUROSCIENCE, 27(12), 3285-3294. doi:10.1523/JNEUROSCI.5202-06.2007
Akay, T., Ludwar, B. C., Goeritz, M. L., Schmitz, J., and Bueschges, A. (2007). Segment specificity of load signal processing depends on walking direction in the stick insect leg muscle control system. JOURNAL OF NEUROSCIENCE 27, 3285-3294.
Akay, T., et al., 2007. Segment specificity of load signal processing depends on walking direction in the stick insect leg muscle control system. JOURNAL OF NEUROSCIENCE, 27(12), p 3285-3294.
T. Akay, et al., “Segment specificity of load signal processing depends on walking direction in the stick insect leg muscle control system”, JOURNAL OF NEUROSCIENCE, vol. 27, 2007, pp. 3285-3294.
Akay, T., Ludwar, B.C., Goeritz, M.L., Schmitz, J., Bueschges, A.: Segment specificity of load signal processing depends on walking direction in the stick insect leg muscle control system. JOURNAL OF NEUROSCIENCE. 27, 3285-3294 (2007).
Akay, Turgay, Ludwar, Bjoern Ch., Goeritz, Marie L., Schmitz, Josef, and Bueschges, Ansgar. “Segment specificity of load signal processing depends on walking direction in the stick insect leg muscle control system”. JOURNAL OF NEUROSCIENCE 27.12 (2007): 3285-3294.

34 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Force dynamics and synergist muscle activation in stick insects: the effects of using joint torques as mechanical stimuli.
Zill SN, Dallmann CJ, Büschges A, Chaudhry S, Schmitz J., J Neurophysiol 120(4), 2018
PMID: 30020837
Spatial Navigation and the Central Complex: Sensory Acquisition, Orientation, and Motor Control.
Varga AG, Kathman ND, Martin JP, Guo P, Ritzmann RE., Front Behav Neurosci 11(), 2017
PMID: 28174527
A load-based mechanism for inter-leg coordination in insects.
Dallmann CJ, Hoinville T, Dürr V, Schmitz J., Proc Biol Sci 284(1868), 2017
PMID: 29187626
Recovery of locomotion after injury in Drosophila melanogaster depends on proprioception.
Isakov A, Buchanan SM, Sullivan B, Ramachandran A, Chapman JK, Lu ES, Mahadevan L, de Bivort B., J Exp Biol 219(pt 11), 2016
PMID: 26994176
Body side-specific control of motor activity during turning in a walking animal.
Gruhn M, Rosenbaum P, Bockemühl T, Büschges A., Elife 5(), 2016
PMID: 27130731
Flexibility of the axial central pattern generator network for locomotion in the salamander.
Ryczko D, Knüsel J, Crespi A, Lamarque S, Mathou A, Ijspeert AJ, Cabelguen JM., J Neurophysiol 113(6), 2015
PMID: 25540227
The role of leg touchdown for the control of locomotor activity in the walking stick insect.
Schmitz J, Gruhn M, Büschges A., J Neurophysiol 113(7), 2015
PMID: 25652931
Investigating inter-segmental connections between thoracic ganglia in the stick insect by means of experimental and simulated phase response curves.
Tóth TI, Grabowska M, Rosjat N, Hellekes K, Borgmann A, Daun-Gruhn S., Biol Cybern 109(3), 2015
PMID: 25712905
A network model comprising 4 segmental, interconnected ganglia, and its application to simulate multi-legged locomotion in crustaceans.
Grabowska M, Toth TI, Smarandache-Wellmann C, Daun-Gruhn S., J Comput Neurosci 38(3), 2015
PMID: 25904469
Task-dependent modification of leg motor neuron synaptic input underlying changes in walking direction and walking speed.
Rosenbaum P, Schmitz J, Schmidt J, Büschges A., J Neurophysiol 114(2), 2015
PMID: 26063769
A neuromechanical simulation of insect walking and transition to turning of the cockroach Blaberus discoidalis.
Szczecinski NS, Brown AE, Bender JA, Quinn RD, Ritzmann RE., Biol Cybern 108(1), 2014
PMID: 24178847
Neuroscience. The Michael Jackson fly.
Mann RS., Science 344(6179), 2014
PMID: 24700848
Neuronal control of Drosophila walking direction.
Bidaye SS, Machacek C, Wu Y, Dickson BJ., Science 344(6179), 2014
PMID: 24700860
Kinematic responses to changes in walking orientation and gravitational load in Drosophila melanogaster.
Mendes CS, Rajendren SV, Bartos I, Márka S, Mann RS., PLoS One 9(10), 2014
PMID: 25350743
Walknet, a bio-inspired controller for hexapod walking.
Schilling M, Hoinville T, Schmitz J, Cruse H., Biol Cybern 107(4), 2013
PMID: 23824506
A neuromechanical model explaining forward and backward stepping in the stick insect.
Tóth TI, Knops S, Daun-Gruhn S., J Neurophysiol 107(12), 2012
PMID: 22402652
Force encoding in stick insect legs delineates a reference frame for motor control.
Zill SN, Schmitz J, Chaudhry S, Büschges A., J Neurophysiol 108(5), 2012
PMID: 22673329
Deciding which way to go: how do insects alter movements to negotiate barriers?
Ritzmann RE, Harley CM, Daltorio KA, Tietz BR, Pollack AJ, Bender JA, Guo P, Horomanski AL, Kathman ND, Nieuwoudt C, Brown AE, Quinn RD., Front Neurosci 6(), 2012
PMID: 22783160
Encoding of force increases and decreases by tibial campaniform sensilla in the stick insect, Carausius morosus.
Zill SN, Büschges A, Schmitz J., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 197(8), 2011
PMID: 21544617
Dominance of local sensory signals over inter-segmental effects in a motor system: experiments.
Borgmann A, Toth TI, Gruhn M, Daun-Gruhn S, Büschges A., Biol Cybern 105(5-6), 2011
PMID: 22290138
Visuomotor control: not so simple insect locomotion.
Ritzmann RE., Curr Biol 20(1), 2010
PMID: 20152137
Organizing network action for locomotion: insights from studying insect walking.
Büschges A, Akay T, Gabriel JP, Schmidt J., Brain Res Rev 57(1), 2008
PMID: 17888515
Regulation of motor pattern frequency by reversals in proprioceptive feedback.
Smarandache CR, Daur N, Hedrich UB, Stein W., Eur J Neurosci 28(3), 2008
PMID: 18702718
Adaptive motor behavior in insects.
Ritzmann RE, Büschges A., Curr Opin Neurobiol 17(6), 2007
PMID: 18308559

48 References

Daten bereitgestellt von Europe PubMed Central.

Signals from load sensors underlie interjoint coordination during stepping movements of the stick insect leg.
Akay T, Haehn S, Schmitz J, Buschges A., J. Neurophysiol. 92(1), 2004
PMID: 14999042
Group I extensor afferents evoke disynaptic EPSPs in cat hindlimb extensor motorneurones during fictive locomotion.
Angel MJ, Guertin P, Jimenez I, McCrea DA., J. Physiol. (Lond.) 494 ( Pt 3)(), 1996
PMID: 8865080
Neuronal control of locomotion in the lobster Homarus americanus
Ayers JL, Davis WJ., 1977
Reaction to disturbances of a walking leg during stance.
Bartling C, Schmitz J., J. Exp. Biol. 203(Pt 7), 2000
PMID: 10708641
Sense organs in the femur of the stick insect and their relevance to the control of position of the femur-tibia-joint
Bässler U., 1977
Afferent control of walking movements in the stick insect Cuniculina impigra. II. Reflex reversal and the release of swing phase in the restrained foreleg
Bässler U., 1986
Functional principles of pattern generation for walking movements of stick insect forelegs: the role of the femoral chordotonal organ afferences
Bässler U., 1988
Pattern generation for stick insect walking movements--multisensory control of a locomotor program.
Bassler U, Buschges A., Brain Res. Brain Res. Rev. 27(1), 1998
PMID: 9639677
The inherent walking direction differs for the prothoracic and metathoracic legs of stick insects
Bässler U, Foth E, Breutel G., 1985
Sensory pathways and their modulation in the control of locomotion.
Buschges A, Manira AE., Curr. Opin. Neurobiol. 8(6), 1998
PMID: 9914236
Rhythmic patterns in the thoracic nerve cord of the stick insect induced by pilocarpine
BÜSchges A, Schmitz J, BÄSsler U., J. Exp. Biol. 198(Pt 2), 1995
PMID: 9318078
Adaptive motor control in crayfish.
Cattaert D, Le Ray D., Prog. Neurobiol. 63(2), 2001
PMID: 11124446
Invertebrate presynaptic inhibition and motor control.
Clarac F, Cattaert D., Exp Brain Res 112(2), 1996
PMID: 8951385
Central control components of a 'simple' stretch reflex.
Clarac F, Cattaert D, Le Ray D., Trends Neurosci. 23(5), 2000
PMID: 10782125
Which parameters control leg movements of a walking leg? II. The start of swing phase
Cruse H., 1985
Activity and directional sensitivity of leg campaniform sensilla in a stick insect
Delcomyn F., 1991
Reversal of a walking leg reflex elicited by a muscle receptor
DiCaprio RA, Clarac F., 1981
Load-regulating mechanisms in gait and posture: comparative aspects.
Duysens J, Clarac F, Cruse H., Physiol. Rev. 80(1), 2000
PMID: 10617766
Dynamic simulation of insect walking.
Ekeberg O, Blumel M, Buschges A., Arthropod Struct Dev 33(3), 2004
PMID: 18089040
Behav and motor output for an insect walking on a slippery surface. 1. Forward walking
Epstein S, Graham D., 1983
Pattern and control of walking insects
Graham D., 1985
Effects of afference sign reversal on motor activity in walking stick insects (Carausius morosus)
Graham D, Bässler U., 1981
Behav and motor output for an insect walking on a slippery surface. 2. Backward walking
Graham D, Epstein S., 1985
The motor infrastructure: from ion channels to neuronal networks.
Grillner S., Nat. Rev. Neurosci. 4(7), 2003
PMID: 12838332
Tethered stick insect walking: a modified slippery surface setup with optomotor stimulation and electrical monitoring of tarsal contact.
Gruhn M, Hoffmann O, Dubbert M, Scharstein H, Buschges A., J. Neurosci. Methods 158(2), 2006
PMID: 16824615
Contribution of hind limb flexor muscle afferents to the timing of phase transitions in the cat step cycle.
Hiebert GW, Whelan PJ, Prochazka A, Pearson KG., J. Neurophysiol. 75(3), 1996
PMID: 8867123
Intersegmental coordination of rhythmic motor patterns.
Hill AA, Masino MA, Calabrese RL., J. Neurophysiol. 90(2), 2003
PMID: 12904484
Anatomy and physiology of trochanteral campaniform sensilla in the stick insect, Cuniculina impigra
Hofmann T, Bässler U., 1982
Beiträge zur Anatomie der Muskulatur und der peripheren Nerven von Carausius (Dixippus) morosus
Marquardt F., 1940
Kinematics and motor activity during tethered walking and turning in the cockroach, Blaberus discoidalis.
Mu L, Ritzmann RE., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 191(11), 2005
PMID: 16258746
Presynaptic mechanisms during rhythmic activity in vertebrates and invertebrates
Nusbaum MP, El A, Gossard J-P, Rossignol S., 1997
Neural control of locomotion
Orlovsky GN, Deliagina TG, Grillner S., 1999
Proprioception in insects II. The action of the campaniform sensilla on the legs
Pringle JWS., 1938
Load-compensating reactions in the proximal leg joints of stick insects during standing and walking
Schmitz J., 1993
The treading-on-tarsus reflex in stick insects: phase-dependence and modifications of the motor output during walking
Schmitz J, Haßfeld G., 1989
An improved electrode design for en passant recordings from small nerves
Schmitz J, Büschges A, Delcomyn F., 1988
Plasticity of the extensor group I pathway controlling the stance to swing transition in the cat.
Whelan PJ, Hiebert GW, Pearson KG., J. Neurophysiol. 74(6), 1995
PMID: 8747237
The role of cations in conduction in the central nervous system of the herbivorous insect Carausius morosus
Weidler DJ, Diecke FPJ., 1969
Load sensing and control of posture and locomotion.
Zill S, Schmitz J, Buschges A., Arthropod Struct Dev 33(3), 2004
PMID: 18089039

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 17376989
PubMed | Europe PMC

Suchen in

Google Scholar