Multifocal two-photon laser scanning microscopy combined with photo-activatable GFP for in vivo monitoring of intracellular protein dynamics in real time

Martini J, Schmied K, Palmisano R, Tönsing K, Anselmetti D, Merkle T (2007)
Journal of Structural Biology 158(3): 401-409.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ; ; ;
Abstract / Bemerkung
We used multifocal two-photon laser scanning microscopy for local and selective protein activation and quantitative investigation of intracellular protein dynamics. The localized activation was realized with photo-activatable green-fluorescent-proteins (pa-GFP) and optical two-photon excitation in order to investigate the real-time intracellular dynamics in vivo. Such processes are of crucial importance for a deep understanding and modelling of regulatory and metabolic processes in living cells. Exemplarily, the intracellular dynamics of the Arabidopsis MYB transcription factor LHY/CCA1-like 1 (LCL1) that contains both a nuclear import and a nuclear export signal was quantitatively investigated. We used tobacco BY-2 protoplasts co-transfected with plasmids encoding photo-activatable green fluorescent protein (pa-GFP) fusion proteins and a red fluorescing transfection marker and measured the rapid nuclear export of pa-GFP-LCL1 I after its photo-activation in the nucleus. In contrast, an export-negative mutant of LCL1 remained trapped inside the nucleus. We detemined average time constants of 51s and 125s for the decrease of fluorescence in the nucleus due to active bi-directional nuclear transport of pa-GFP-LCL1 and diffusion of pa-GFP, respectively. (c) 2007 Elsevier Inc. All rights reserved.
Erscheinungsjahr
Zeitschriftentitel
Journal of Structural Biology
Band
158
Ausgabe
3
Seite(n)
401-409
ISSN
PUB-ID

Zitieren

Martini J, Schmied K, Palmisano R, Tönsing K, Anselmetti D, Merkle T. Multifocal two-photon laser scanning microscopy combined with photo-activatable GFP for in vivo monitoring of intracellular protein dynamics in real time. Journal of Structural Biology. 2007;158(3):401-409.
Martini, J., Schmied, K., Palmisano, R., Tönsing, K., Anselmetti, D., & Merkle, T. (2007). Multifocal two-photon laser scanning microscopy combined with photo-activatable GFP for in vivo monitoring of intracellular protein dynamics in real time. Journal of Structural Biology, 158(3), 401-409. doi:10.1016/j.jsb.2006.12.012
Martini, J., Schmied, K., Palmisano, R., Tönsing, K., Anselmetti, D., and Merkle, T. (2007). Multifocal two-photon laser scanning microscopy combined with photo-activatable GFP for in vivo monitoring of intracellular protein dynamics in real time. Journal of Structural Biology 158, 401-409.
Martini, J., et al., 2007. Multifocal two-photon laser scanning microscopy combined with photo-activatable GFP for in vivo monitoring of intracellular protein dynamics in real time. Journal of Structural Biology, 158(3), p 401-409.
J. Martini, et al., “Multifocal two-photon laser scanning microscopy combined with photo-activatable GFP for in vivo monitoring of intracellular protein dynamics in real time”, Journal of Structural Biology, vol. 158, 2007, pp. 401-409.
Martini, J., Schmied, K., Palmisano, R., Tönsing, K., Anselmetti, D., Merkle, T.: Multifocal two-photon laser scanning microscopy combined with photo-activatable GFP for in vivo monitoring of intracellular protein dynamics in real time. Journal of Structural Biology. 158, 401-409 (2007).
Martini, Joerg, Schmied, Katja, Palmisano, Ralf, Tönsing, Katja, Anselmetti, Dario, and Merkle, Thomas. “Multifocal two-photon laser scanning microscopy combined with photo-activatable GFP for in vivo monitoring of intracellular protein dynamics in real time”. Journal of Structural Biology 158.3 (2007): 401-409.

14 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Identification of 30 MYB transcription factor genes and analysis of their expression during abiotic stress in peanut (Arachis hypogaea L.).
Chen N, Yang Q, Pan L, Chi X, Chen M, Hu D, Yang Z, Wang T, Wang M, Yu S., Gene 533(1), 2014
PMID: 24013078
Fluorescent proteins for live-cell imaging with super-resolution.
Nienhaus K, Nienhaus GU., Chem Soc Rev 43(4), 2014
PMID: 24056711
Advances in multiphoton microscopy technology.
Hoover EE, Squier JA., Nat Photonics 7(2), 2013
PMID: 24307915
A new set of reversibly photoswitchable fluorescent proteins for use in transgenic plants.
Lummer M, Humpert F, Wiedenlübbert M, Sauer M, Schüttpelz M, Staiger D., Mol Plant 6(5), 2013
PMID: 23434876
Characterization and drug resistance patterns of Ewing's sarcoma family tumor cell lines.
May WA, Grigoryan RS, Keshelava N, Cabral DJ, Christensen LL, Jenabi J, Ji L, Triche TJ, Lawlor ER, Reynolds CP., PLoS One 8(12), 2013
PMID: 24312454
Nucleo-cytoplasmic transport of proteins and RNA in plants.
Merkle T., Plant Cell Rep 30(2), 2011
PMID: 20960203
Combining ocFLIM and FIDSAM reveals fast and dynamic physiological responses at subcellular resolution in living plant cells.
Elgass K, Caesar K, Harter K, Meixner AJ, Schleifenbaum F., J Microsc 242(2), 2011
PMID: 21118238
Patterned two-photon photoactivation illuminates spatial reorganization in live cells.
Smith AW, Smoligovets AA, Groves JT., J Phys Chem A 115(16), 2011
PMID: 21391691
Fluorescent proteins and their applications in imaging living cells and tissues.
Chudakov DM, Matz MV, Lukyanov S, Lukyanov KA., Physiol Rev 90(3), 2010
PMID: 20664080
Nucleocytoplasmic distribution of the Arabidopsis chromatin-associated HMGB2/3 and HMGB4 proteins.
Pedersen DS, Merkle T, Marktl B, Lildballe DL, Antosch M, Bergmann T, Tönsing K, Anselmetti D, Grasser KD., Plant Physiol 154(4), 2010
PMID: 20940346
High-resolution mosaic imaging with multifocal, multiphoton photon-counting microscopy.
Chandler E, Hoover E, Field J, Sheetz K, Amir W, Carriles R, Ding SY, Squier J., Appl Opt 48(11), 2009
PMID: 19363544
Novel application of fluorescence lifetime and fluorescence microscopy enables quantitative access to subcellular dynamics in plant cells.
Elgass K, Caesar K, Schleifenbaum F, Stierhof YD, Meixner AJ, Harter K., PLoS One 4(5), 2009
PMID: 19492078
Chromosomal high mobility group (HMG) proteins of the HMGB-type occurring in the moss Physcomitrella patens.
Kiilerich B, Stemmer C, Merkle T, Launholt D, Gorr G, Grasser KD., Gene 407(1-2), 2008
PMID: 17980517

27 References

Daten bereitgestellt von Europe PubMed Central.

Two-photon tissue imaging: seeing the immune system in a fresh light.
Cahalan MD, Parker I, Wei SH, Miller MJ., Nat. Rev. Immunol. 2(11), 2002
PMID: 12415310
Probing nucleocytoplasmic transport by two-photon activation of PA-GFP.
Chen Y, MacDonald PJ, Skinner JP, Patterson GH, Muller JD., Microsc. Res. Tech. 69(3), 2006
PMID: 16538629
Two-photon laser scanning fluorescence microscopy.
Denk W, Strickler JH, Webb WW., Science 248(4951), 1990
PMID: 2321027

AUTHOR UNKNOWN, 0
CRM1 is an export receptor for leucine-rich nuclear export signals.
Fornerod M, Ohno M, Yoshida M, Mattaj IW., Cell 90(6), 1997
PMID: 9323133
CRM1 is responsible for intracellular transport mediated by the nuclear export signal.
Fukuda M, Asano S, Nakamura T, Adachi M, Yoshida M, Yanagida M, Nishida E., Nature 390(6657), 1997
PMID: 9384386
PRA1 inhibits the extraction of membrane-bound rab GTPase by GDI1.
Hutt DM, Da-Silva LF, Chang LH, Prosser DC, Ngsee JK., J. Biol. Chem. 275(24), 2000
PMID: 10751420
Multiphoton microscopy in life sciences.
Konig K., J Microsc 200(Pt 2), 2000
PMID: 11106949
Leptomycin B inactivates CRM1/exportin 1 by covalent modification at a cysteine residue in the central conserved region.
Kudo N, Matsumori N, Taoka H, Fujiwara D, Schreiner EP, Wolff B, Yoshida M, Horinouchi S., Proc. Natl. Acad. Sci. U.S.A. 96(16), 1999
PMID: 10430904
Multiphoton-evoked color change of DsRed as an optical highlighter for cellular and subcellular labeling.
Marchant JS, Stutzmann GE, Leissring MA, LaFerla FM, Parker I., Nat. Biotechnol. 19(7), 2001
PMID: 11433276

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
High efficiency beam splitter for multifocal multiphoton microscopy.
Nielsen T, Fricke M, Hellweg D, Andresen P., J Microsc 201(Pt 3), 2001
PMID: 11240852
A photoactivatable GFP for selective photolabeling of proteins and cells.
Patterson GH, Lippincott-Schwartz J., Science 297(5588), 2002
PMID: 12228718
Selective photolabeling of proteins using photoactivatable GFP.
Patterson GH, Lippincott-Schwartz J., Methods 32(4), 2004
PMID: 15003607
One- and two-photon photoactivation of a paGFP-fusion protein in live Drosophila embryos.
Post JN, Lidke KA, Rieger B, Arndt-Jovin DJ., FEBS Lett. 579(2), 2005
PMID: 15642339

AUTHOR UNKNOWN, 0
Kinetic analysis of translocation through nuclear pore complexes.
Ribbeck K, Gorlich D., EMBO J. 20(6), 2001
PMID: 11250898
The late elongated hypocotyl mutation of Arabidopsis disrupts circadian rhythms and the photoperiodic control of flowering.
Schaffer R, Ramsay N, Samach A, Corden S, Putterill J, Carre IA, Coupland G., Cell 93(7), 1998
PMID: 9657154

AUTHOR UNKNOWN, 0
Two-photon activation and excitation properties of PA-GFP in the 720-920-nm region.
Schneider M, Barozzi S, Testa I, Faretta M, Diaspro A., Biophys. J. 89(2), 2005
PMID: 15908572
Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation.
Zipfel WR, Williams RM, Christie R, Nikitin AY, Hyman BT, Webb WW., Proc. Natl. Acad. Sci. U.S.A. 100(12), 2003
PMID: 12756303
Nonlinear magic: multiphoton microscopy in the biosciences.
Zipfel WR, Williams RM, Webb WW., Nat. Biotechnol. 21(11), 2003
PMID: 14595365

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 17363273
PubMed | Europe PMC

Suchen in

Google Scholar