Immunisation with 'naive' syngeneic dendritic cells protects mice from tumour challenge

Grimshaw MJ, Papazisis K, Picco G, Bohnenkamp H, Noll T, Taylor-Papadimitriou J, Burchell J (2008)
British Journal of Cancer 98(4): 784-791.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Grimshaw, M. J.; Papazisis, K.; Picco, G.; Bohnenkamp, H.; Noll, ThomasUniBi ; Taylor-Papadimitriou, J.; Burchell, J.
Abstract / Bemerkung
Dendritic cells (DCs) 'pulsed' with an appropriate antigen may elicit an antitumour immune response in mouse models. However, while attempting to develop a DC immunotherapy protocol for the treatment of breast cancer based on the tumour-associated MUC1 glycoforms, we found that unpulsed DCs can affect tumour growth. Protection from RMA-MUC1 tumour challenge was achieved in C57Bl/6 MUC1 transgenic mice by immunising with syngeneic DCs pulsed with a MUC1 peptide. However, unpulsed DCs gave a similar level of protection, making it impossible to evaluate the effect of immunisation of mice with DCs pulsed with the specific peptide. Balb/C mice could also be protected from tumour challenge by immunisation with unpulsed DCs prior to challenge with murine mammary tumour cells (410.4) or these cells transfected with MUC1 (E3). Protection was achieved with as few as three injections of 50 000 naive DCs per mouse per week, was not dependent on injection route, and was not specific to cell lines expressing human MUC1. However, the use of Rag2-knockout mice demonstrated that the adaptive immune response was required for tumour rejection. Injection of unpulsed DCs into mice bearing the E3 tumour slowed tumour growth. In vitro, production of IFN-gamma and IL-4 was increased in splenic cells isolated from mice immunised with DCs. Depleting CD4 T cells in vitro partially decreased cytokine production by splenocytes, but CD8 depletion had no effect. This paper shows that naive syngeneic DCs may induce an antitumour immune response and has implications for DC immunotherapy preclinical and clinical trials.
Stichworte
MUC1; immunotherapy; dendritic cell; breast cancer
Erscheinungsjahr
2008
Zeitschriftentitel
British Journal of Cancer
Band
98
Ausgabe
4
Seite(n)
784-791
ISSN
0007-0920
eISSN
1532-1827
Page URI
https://pub.uni-bielefeld.de/record/1592705

Zitieren

Grimshaw MJ, Papazisis K, Picco G, et al. Immunisation with 'naive' syngeneic dendritic cells protects mice from tumour challenge. British Journal of Cancer. 2008;98(4):784-791.
Grimshaw, M. J., Papazisis, K., Picco, G., Bohnenkamp, H., Noll, T., Taylor-Papadimitriou, J., & Burchell, J. (2008). Immunisation with 'naive' syngeneic dendritic cells protects mice from tumour challenge. British Journal of Cancer, 98(4), 784-791. https://doi.org/10.1038/sj.bjc.6604221
Grimshaw, M. J., Papazisis, K., Picco, G., Bohnenkamp, H., Noll, Thomas, Taylor-Papadimitriou, J., and Burchell, J. 2008. “Immunisation with 'naive' syngeneic dendritic cells protects mice from tumour challenge”. British Journal of Cancer 98 (4): 784-791.
Grimshaw, M. J., Papazisis, K., Picco, G., Bohnenkamp, H., Noll, T., Taylor-Papadimitriou, J., and Burchell, J. (2008). Immunisation with 'naive' syngeneic dendritic cells protects mice from tumour challenge. British Journal of Cancer 98, 784-791.
Grimshaw, M.J., et al., 2008. Immunisation with 'naive' syngeneic dendritic cells protects mice from tumour challenge. British Journal of Cancer, 98(4), p 784-791.
M.J. Grimshaw, et al., “Immunisation with 'naive' syngeneic dendritic cells protects mice from tumour challenge”, British Journal of Cancer, vol. 98, 2008, pp. 784-791.
Grimshaw, M.J., Papazisis, K., Picco, G., Bohnenkamp, H., Noll, T., Taylor-Papadimitriou, J., Burchell, J.: Immunisation with 'naive' syngeneic dendritic cells protects mice from tumour challenge. British Journal of Cancer. 98, 784-791 (2008).
Grimshaw, M. J., Papazisis, K., Picco, G., Bohnenkamp, H., Noll, Thomas, Taylor-Papadimitriou, J., and Burchell, J. “Immunisation with 'naive' syngeneic dendritic cells protects mice from tumour challenge”. British Journal of Cancer 98.4 (2008): 784-791.

1 Zitation in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

MUC1 immunotherapy.
Beatson RE, Taylor-Papadimitriou J, Burchell JM., Immunotherapy 2(3), 2010
PMID: 20635898

40 References

Daten bereitgestellt von Europe PubMed Central.

Mechanisms of tumor evasion.
Campoli M, Ferrone S, Zea AH, Rodriguez PC, Ochoa AC., Cancer Treat. Res. 123(), 2005
PMID: 16211866
Immune and clinical outcomes in patients with stage IV melanoma vaccinated with peptide-pulsed dendritic cells derived from CD34+ progenitors and activated with type I interferon.
Banchereau J, Ueno H, Dhodapkar M, Connolly J, Finholt JP, Klechevsky E, Blanck JP, Johnston DA, Palucka AK, Fay J., J. Immunother. 28(5), 2005
PMID: 16113607
Purification of splenic dendritic cells induces maturation and capacity to stimulate Th1 response in vivo.
Schlecht G, Mouries J, Poitrasson-Riviere M, Leclerc C, Dadaglio G., Int. Immunol. 18(3), 2006
PMID: 16415098
Dendritic cells in a mature age.
Reis e Sousa C., Nat. Rev. Immunol. 6(6), 2006
PMID: 16691244
Long-term outcomes in patients with metastatic melanoma vaccinated with melanoma peptide-pulsed CD34(+) progenitor-derived dendritic cells.
Fay JW, Palucka AK, Paczesny S, Dhodapkar M, Johnston DA, Burkeholder S, Ueno H, Banchereau J., Cancer Immunol. Immunother. 55(10), 2005
PMID: 16331519
Adjuvant activity of CpG oligodeoxynucleotides.
Klinman DM., Int. Rev. Immunol. 25(3-4), 2006
PMID: 16818369
TRANCE, a tumor necrosis factor family member, enhances the longevity and adjuvant properties of dendritic cells in vivo.
Josien R, Li HL, Ingulli E, Sarma S, Wong BR, Vologodskaia M, Steinman RM, Choi Y., J. Exp. Med. 191(3), 2000
PMID: 10662795
Induction of cytotoxic T cell responses and tumor immunity against unrelated tumors using telomerase reverse transcriptase RNA transfected dendritic cells.
Nair SK, Heiser A, Boczkowski D, Majumdar A, Naoe M, Lebkowski JS, Vieweg J, Gilboa E., Nat. Med. 6(9), 2000
PMID: 10973321
Induction of antitumor immunity by vaccination of dendritic cells transfected with MUC1 RNA.
Koido S, Kashiwaba M, Chen D, Gendler S, Kufe D, Gong J., J. Immunol. 165(10), 2000
PMID: 11067929
Efficient nonviral transfection of dendritic cells and their use for in vivo immunization.
Irvine AS, Trinder PK, Laughton DL, Ketteringham H, McDermott RH, Reid SC, Haines AM, Amir A, Husain R, Doshi R, Young LS, Mountain A., Nat. Biotechnol. 18(12), 2000
PMID: 11101806
Identification of three non-VNTR MUC1-derived HLA-A*0201-restricted T-cell epitopes that induce protective anti-tumor immunity in HLA-A2/K(b)-transgenic mice.
Heukamp LC, van der Burg SH, Drijfhout JW, Melief CJ, Taylor-Papadimitriou J, Offringa R., Int. J. Cancer 91(3), 2001
PMID: 11169964
Dendritic cells for specific cancer immunotherapy.
Meidenbauer N, Andreesen R, Mackensen A., Biol. Chem. 382(4), 2001
PMID: 11405216
Generation of functional and mature dendritic cells from cord blood and bone marrow CD34+ cells by two-step culture combined with calcium ionophore treatment.
Liu A, Takahashi M, Narita M, Zheng Z, Kanazawa N, Abe T, Nikkuni K, Furukawa T, Toba K, Fuse I, Aizawa Y., J. Immunol. Methods 261(1-2), 2002
PMID: 11861065
Type I interferons produced by dendritic cells promote their phenotypic and functional activation.
Montoya M, Schiavoni G, Mattei F, Gresser I, Belardelli F, Borrow P, Tough DF., Blood 99(9), 2002
PMID: 11964292
The use of dendritic cells in cancer immunotherapy.
Schuler G, Schuler-Thurner B, Steinman RM., Curr. Opin. Immunol. 15(2), 2003
PMID: 12633662
Immunotherapy of spontaneous mammary carcinoma with fusions of dendritic cells and mucin 1-positive carcinoma cells.
Chen D, Xia J, Tanaka Y, Chen H, Koido S, Wernet O, Mukherjee P, Gendler SJ, Kufe D, Gong J., Immunology 109(2), 2003
PMID: 12757626
Dendritic cell-induced activation of adaptive and innate antitumor immunity.
van den Broeke LT, Daschbach E, Thomas EK, Andringa G, Berzofsky JA., J. Immunol. 171(11), 2003
PMID: 14634094
Functional analysis of tumor-specific Th cell responses detected in melanoma patients after dendritic cell-based immunotherapy.
Schultz ES, Schuler-Thurner B, Stroobant V, Jenne L, Berger TG, Thielemanns K, van der Bruggen P, Schuler G., J. Immunol. 172(2), 2004
PMID: 14707109
Specifically activated memory T cell subsets from cancer patients recognize and reject xenotransplanted autologous tumors.
Beckhove P, Feuerer M, Dolenc M, Schuetz F, Choi C, Sommerfeldt N, Schwendemann J, Ehlert K, Altevogt P, Bastert G, Schirrmacher V, Umansky V., J. Clin. Invest. 114(1), 2004
PMID: 15232613
Immune recognition of self in immunity against cancer.
Houghton AN, Guevara-Patino JA., J. Clin. Invest. 114(4), 2004
PMID: 15314682
Influence of dendritic cells on tumor growth.
Knight SC, Hunt R, Dore C, Medawar PB., Proc. Natl. Acad. Sci. U.S.A. 82(13), 1985
PMID: 3859872
Expression of the gene coding for a human mucin in mouse mammary tumor cells can affect their tumorigenicity.
Lalani EN, Berdichevsky F, Boshell M, Shearer M, Wilson D, Stauss H, Gendler SJ, Taylor-Papadimitriou J., J. Biol. Chem. 266(23), 1991
PMID: 1714457
Tissue-specific expression of a human polymorphic epithelial mucin (MUC1) in transgenic mice.
Peat N, Gendler SJ, Lalani N, Duhig T, Taylor-Papadimitriou J., Cancer Res. 52(7), 1992
PMID: 1372533
Therapy of murine tumors with tumor peptide-pulsed dendritic cells: dependence on T cells, B7 costimulation, and T helper cell 1-associated cytokines.
Zitvogel L, Mayordomo JI, Tjandrawan T, DeLeo AB, Clarke MR, Lotze MT, Storkus WJ., J. Exp. Med. 183(1), 1996
PMID: 8551248
Immunotherapeutic potential of tumor antigen-pulsed and unpulsed dendritic cells generated from murine bone marrow.
Yang S, Darrow TL, Vervaert CE, Seigler HF., Cell. Immunol. 179(1), 1997
PMID: 9259775
Peptide mimics of a tumor antigen induce functional cytotoxic T cells.
Apostolopoulos V, Lofthouse SA, Popovski V, Chelvanayagam G, Sandrin MS, McKenzie IF., Nat. Biotechnol. 16(3), 1998
PMID: 9528009
Vaccination with dendritic cells inhibits the growth of hepatic metastases in B6 mice.
DeMatos P, Abdel-Wahab Z, Vervaert C, Seigler HF., Cell. Immunol. 185(1), 1998
PMID: 9636684
Identification of HLA-A2-restricted T-cell epitopes derived from the MUC1 tumor antigen for broadly applicable vaccine therapies.
Brossart P, Heinrich KS, Stuhler G, Behnke L, Reichardt VL, Stevanovic S, Muhm A, Rammensee HG, Kanz L, Brugger W., Blood 93(12), 1999
PMID: 10361129
Immune tolerance in breast cancer.
Cheng F, Gabrilovich D, Sotomayor EM., Breast Dis 20(), 2004
PMID: 15687711
Responses of human T cells to peptides flanking the tandem repeat and overlapping the signal sequence of MUC1.
Correa I, Plunkett T, Coleman J, Galani E, Windmill E, Burchell JM, Taylor-Papdimitriou J., Int. J. Cancer 115(5), 2005
PMID: 15729696
Breast carcinoma cell lysate-pulsed dendritic cells cross-prime MUC1-specific CD8+ T cells identified by peptide-MHC-class-I tetramers.
Bohnenkamp HR, Coleman J, Burchell JM, Taylor-Papadimitriou J, Noll T., Cell. Immunol. 231(1-2), 2004
PMID: 15919376
Dendritic cell-based cancer immunotherapy targeting MUC-1.
Wierecky J, Mueller M, Brossart P., Cancer Immunol. Immunother. 55(1), 2005
PMID: 15864588
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 18253127
PubMed | Europe PMC

Suchen in

Google Scholar