Structure of the Yersinia enterocolitica type III secretion translocator chaperone SycD

Buttner CR, Sorg I, Cornelis GR, Heinz DW, Niemann H (2008)

Zeitschriftenaufsatz | Veröffentlicht | Englisch
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Buttner, Carina R.; Sorg, Isabel; Cornelis, Guy R.; Heinz, Dirk W.; Niemann, HartmutUniBi
Abstract / Bemerkung
Many Gram-negative bacteria use a type III secretion (T3S) system to directly inject effector molecules into eucaryotic cells in order to establish a symbiotic or pathogenic relationship with their host. The translocation of many T3S proteins requires specialized chaperones from the bacterial cytosol. SycD belongs to a class of T3S chaperones that assists the secretion of pore-forming translocators and, specifically chaperones the translocators YopB and YopD from enteropathogenic Yersinia enterocolitica. In addition, SycD is involved in the regulation of virulence factor biosynthesis and secretion. In this study,,we present two crystal structures of Y. enterocolitica SycD at 1.95 and 2.6 angstrom resolution, the first experimental structures of a T3S class 11 chaperone specific for translocators. The fold of SycD is entirely a-helical and reveals three tetratricopeptide repeat-like motifs that had been predicted from amino acid sequence. In both structures, SycD forms dimers utilizing residues from the first tetratricopeptide repeat motif. Using site-directed mutagenesis and size exclusion chromatography, we verified that SycD forms head-to-head homodimers in solution. Although in both structures, dimerization largely depends on the same residues, the two assemblies represent alternative dimers that exhibit different monomer orientations and overall shape. In these two distinct head-to-head dimers, both the concave and the convex surface of each monomer are accessible for interactions with the SycD binding partners YopB and YopD. A SycD variant carrying two point mutations in the dimerization interface is properly folded but defective in dimerization. Expression of this stable SycD monomer in Yersinia does not rescue the phenotype of a sycD null mutant, suggesting a physiological relevance of the dimerization interface. (c) 2007 Elsevier Ltd. All rights reserved.
alternative dimer assembly; SycD; tetratricopeptide repeat; type III secretion; chaperone
Page URI


Buttner CR, Sorg I, Cornelis GR, Heinz DW, Niemann H. Structure of the Yersinia enterocolitica type III secretion translocator chaperone SycD. JOURNAL OF MOLECULAR BIOLOGY. 2008;375(4):997-1012.
Buttner, C. R., Sorg, I., Cornelis, G. R., Heinz, D. W., & Niemann, H. (2008). Structure of the Yersinia enterocolitica type III secretion translocator chaperone SycD. JOURNAL OF MOLECULAR BIOLOGY, 375(4), 997-1012.
Buttner, Carina R., Sorg, Isabel, Cornelis, Guy R., Heinz, Dirk W., and Niemann, Hartmut. 2008. “Structure of the Yersinia enterocolitica type III secretion translocator chaperone SycD”. JOURNAL OF MOLECULAR BIOLOGY 375 (4): 997-1012.
Buttner, C. R., Sorg, I., Cornelis, G. R., Heinz, D. W., and Niemann, H. (2008). Structure of the Yersinia enterocolitica type III secretion translocator chaperone SycD. JOURNAL OF MOLECULAR BIOLOGY 375, 997-1012.
Buttner, C.R., et al., 2008. Structure of the Yersinia enterocolitica type III secretion translocator chaperone SycD. JOURNAL OF MOLECULAR BIOLOGY, 375(4), p 997-1012.
C.R. Buttner, et al., “Structure of the Yersinia enterocolitica type III secretion translocator chaperone SycD”, JOURNAL OF MOLECULAR BIOLOGY, vol. 375, 2008, pp. 997-1012.
Buttner, C.R., Sorg, I., Cornelis, G.R., Heinz, D.W., Niemann, H.: Structure of the Yersinia enterocolitica type III secretion translocator chaperone SycD. JOURNAL OF MOLECULAR BIOLOGY. 375, 997-1012 (2008).
Buttner, Carina R., Sorg, Isabel, Cornelis, Guy R., Heinz, Dirk W., and Niemann, Hartmut. “Structure of the Yersinia enterocolitica type III secretion translocator chaperone SycD”. JOURNAL OF MOLECULAR BIOLOGY 375.4 (2008): 997-1012.

36 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Plant Aquaporins in Infection by and Immunity Against Pathogens - A Critical Review.
Zhang L, Chen L, Dong H., Front Plant Sci 10(), 2019
PMID: 31191567
Heterologous Complementation Studies With the YscX and YscY Protein Families Reveals a Specificity for Yersinia pseudotuberculosis Type III Secretion.
Gurung JM, Amer AAA, Francis MK, Costa TRD, Chen S, Zavialov AV, Francis MS., Front Cell Infect Microbiol 8(), 2018
PMID: 29616194
Expression of eukaryotic-like protein in the microbiome of sponges.
Díez-Vives C, Moitinho-Silva L, Nielsen S, Reynolds D, Thomas T., Mol Ecol 26(5), 2017
PMID: 28036141
Functional relatedness in the Inv/Mxi-Spa type III secretion system family.
Klein JA, Dave BM, Raphenya AR, McArthur AG, Knodler LA., Mol Microbiol 103(6), 2017
PMID: 27997726
Assembly and structure of the T3SS.
Burkinshaw BJ, Strynadka NC., Biochim Biophys Acta 1843(8), 2014
PMID: 24512838
Binding mode analysis of a major T3SS translocator protein PopB with its chaperone PcrH from Pseudomonas aeruginosa.
Banerjee A, Dey S, Chakraborty A, Datta A, Basu A, Chakrabarti S, Datta S., Proteins 82(12), 2014
PMID: 25116453
Tetratricopeptide repeat motifs in the world of bacterial pathogens: role in virulence mechanisms.
Cerveny L, Straskova A, Dankova V, Hartlova A, Ceckova M, Staud F, Stulik J., Infect Immun 81(3), 2013
PMID: 23264049
Structure and biophysics of type III secretion in bacteria.
Chatterjee S, Chaudhury S, McShan AC, Kaur K, De Guzman RN., Biochemistry 52(15), 2013
PMID: 23521714
Dimerization of the Pseudomonas aeruginosa translocator chaperone PcrH is required for stability, not function.
Tomalka AG, Zmina SE, Stopford CM, Rietsch A., J Bacteriol 195(21), 2013
PMID: 23974025
The SseC translocon component in Salmonella enterica serovar Typhimurium is chaperoned by SscA.
Cooper CA, Mulder DT, Allison SE, Pilar AV, Coombes BK., BMC Microbiol 13(), 2013
PMID: 24090070
Structure of Escherichia coli BamD and its functional implications in outer membrane protein assembly.
Dong C, Hou HF, Yang X, Shen YQ, Dong YH., Acta Crystallogr D Biol Crystallogr 68(pt 2), 2012
PMID: 22281737
Binding affects the tertiary and quaternary structures of the Shigella translocator protein IpaB and its chaperone IpgC.
Adam PR, Patil MK, Dickenson NE, Choudhari S, Barta M, Geisbrecht BV, Picking WL, Picking WD., Biochemistry 51(19), 2012
PMID: 22497344
Implication of proteins containing tetratricopeptide repeats in conditional virulence phenotypes of Legionella pneumophila.
Bandyopadhyay P, Sumer EU, Jayakumar D, Liu S, Xiao H, Steinman HM., J Bacteriol 194(14), 2012
PMID: 22563053
Membrane targeting and pore formation by the type III secretion system translocon.
Matteï PJ, Faudry E, Job V, Izoré T, Attree I, Dessen A., FEBS J 278(3), 2011
PMID: 21182592
Crystal structure of BamD: an essential component of the β-Barrel assembly machinery of gram-negative bacteria.
Sandoval CM, Baker SL, Jansen K, Metzner SI, Sousa MC., J Mol Biol 409(3), 2011
PMID: 21463635
Crystal structure of the heteromolecular chaperone, AscE-AscG, from the type III secretion system in Aeromonas hydrophila.
Chatterjee C, Kumar S, Chakraborty S, Tan YW, Leung KY, Sivaraman J, Mok YK., PLoS One 6(4), 2011
PMID: 21559439
Biogenesis, regulation, and targeting of the type III secretion system.
Izoré T, Job V, Dessen A., Structure 19(5), 2011
PMID: 21565695
The Chlamydia effector chlamydial outer protein N (CopN) sequesters tubulin and prevents microtubule assembly.
Archuleta TL, Du Y, English CA, Lory S, Lesser C, Ohi MD, Ohi R, Spiller BW., J Biol Chem 286(39), 2011
PMID: 21841198
Structural basis of chaperone recognition of type III secretion system minor translocator proteins.
Job V, Matteï PJ, Lemaire D, Attree I, Dessen A., J Biol Chem 285(30), 2010
PMID: 20385547
Structural insight into the regulatory mechanisms of interactions of the flagellar type III chaperone FliT with its binding partners.
Imada K, Minamino T, Kinoshita M, Furukawa Y, Namba K., Proc Natl Acad Sci U S A 107(19), 2010
PMID: 20421493
Evidence for alternative quaternary structure in a bacterial Type III secretion system chaperone.
Barta ML, Zhang L, Picking WL, Geisbrecht BV., BMC Struct Biol 10(), 2010
PMID: 20633281
Crystallization and preliminary crystallographic analysis of the type III secretion translocator chaperone SicA from Salmonella enterica.
Priyadarshi A, Tang L., Acta Crystallogr Sect F Struct Biol Cryst Commun 66(pt 11), 2010
PMID: 21045315
Coiled-coils in type III secretion systems: structural flexibility, disorder and biological implications.
Gazi AD, Charova SN, Panopoulos NJ, Kokkinidis M., Cell Microbiol 11(5), 2009
PMID: 19215225
Investigation of EscA as a chaperone for the Edwardsiella tarda type III secretion system putative translocon component EseC.
Wang B, Mo ZL, Mao YX, Zou YX, Xiao P, Li J, Yang JY, Ye XH, Leung KY, Zhang PJ., Microbiology 155(pt 4), 2009
PMID: 19332827
IpaB-IpgC interaction defines binding motif for type III secretion translocator.
Lunelli M, Lokareddy RK, Zychlinsky A, Kolbe M., Proc Natl Acad Sci U S A 106(24), 2009
PMID: 19478065

75 References

Daten bereitgestellt von Europe PubMed Central.

The bacterial injection kit: type III secretion systems.
Mota LJ, Cornelis GR., Ann. Med. 37(4), 2005
PMID: 16019722
Functions of the Yersinia effector proteins in inhibiting host immune responses.
Navarro L, Alto NM, Dixon JE., Curr. Opin. Microbiol. 8(1), 2005
PMID: 15694853
Protein delivery into eukaryotic cells by type III secretion machines.
Galan JE, Wolf-Watz H., Nature 444(7119), 2006
PMID: 17136086
Port of entry--the type III secretion translocon.
Buttner D, Bonas U., Trends Microbiol. 10(4), 2002
PMID: 11912026
The various and varying roles of specific chaperones in type III secretion systems.
Parsot C, Hamiaux C, Page AL., Curr. Opin. Microbiol. 6(1), 2003
PMID: 12615213
The multitalented type III chaperones: all you can do with 15 kDa.
Feldman MF, Cornelis GR., FEMS Microbiol. Lett. 219(2), 2003
PMID: 12620614
On the role of specific chaperones, the specific ATPase, and the proton motive force in type III secretion.
Wilharm G, Dittmann S, Schmid A, Heesemann J., Int. J. Med. Microbiol. 297(1), 2006
PMID: 17126597
The discovery of SycO highlights a new function for type III secretion effector chaperones.
Letzelter M, Sorg I, Mota LJ, Meyer S, Stalder J, Feldman M, Kuhn M, Callebaut I, Cornelis GR., EMBO J. 25(13), 2006
PMID: 16794578
Structural and biochemical characterization of the type III secretion chaperones CesT and SigE.
Luo Y, Bertero MG, Frey EA, Pfuetzner RA, Wenk MR, Creagh L, Marcus SL, Lim D, Sicheri F, Kay C, Haynes C, Finlay BB, Strynadka NC., Nat. Struct. Biol. 8(12), 2001
PMID: 11685226
Docking of cytosolic chaperone-substrate complexes at the membrane ATPase during flagellar type III protein export.
Thomas J, Stafford GP, Hughes C., Proc. Natl. Acad. Sci. U.S.A. 101(11), 2004
PMID: 15001708
Regulation of transcription by the activity of the Shigella flexneri type III secretion apparatus.
Mavris M, Page AL, Tournebize R, Demers B, Sansonetti P, Parsot C., Mol. Microbiol. 43(6), 2002
PMID: 11971264
The type III needle and the damage done.
Johnson S, Deane JE, Lea SM., Curr. Opin. Struct. Biol. 15(6), 2005
PMID: 16263265
Structure of the heterotrimeric complex that regulates type III secretion needle formation.
Quinaud M, Ple S, Job V, Contreras-Martel C, Simorre JP, Attree I, Dessen A., Proc. Natl. Acad. Sci. U.S.A. 104(19), 2007
PMID: 17470796
Structural characterization of a type III secretion system filament protein in complex with its chaperone.
Yip CK, Finlay BB, Strynadka NC., Nat. Struct. Mol. Biol. 12(1), 2004
PMID: 15619638
Tetratricopeptide-like repeats in type-III-secretion chaperones and regulators.
Pallen MJ, Francis MS, Futterer K., FEMS Microbiol. Lett. 223(1), 2003
PMID: 12799000
Individual chaperones required for Yop secretion by Yersinia.
Wattiau P, Bernier B, Deslee P, Michiels T, Cornelis GR., Proc. Natl. Acad. Sci. U.S.A. 91(22), 1994
PMID: 7937981
Role of SycD, the chaperone of the Yersinia Yop translocators YopB and YopD.
Neyt C, Cornelis GR., Mol. Microbiol. 31(1), 1999
PMID: 9987117
Yersinia enterocolitica type III secretion chaperone SycD: recombinant expression, purification and characterization of a homodimer.
Schmid A, Dittmann S, Grimminger V, Walter S, Heesemann J, Wilharm G., Protein Expr. Purif. 49(2), 2006
PMID: 16750393
Solvent content of protein crystals.
Matthews BW., J. Mol. Biol. 33(2), 1968
PMID: 5700707
Improved R-factors for diffraction data analysis in macromolecular crystallography.
Diederichs K, Karplus PA., Nat. Struct. Biol. 4(4), 1997
PMID: 9095194
PROMOTIF--a program to identify and analyze structural motifs in proteins.
Hutchinson EG, Thornton JM., Protein Sci. 5(2), 1996
PMID: 8745398
A solution for the best rotation to relate two sets of vectors
Kabsch, Acta Crystallogr. A 32(), 1976
Design of stable alpha-helical arrays from an idealized TPR motif.
Main ER, Xiong Y, Cocco MJ, D'Andrea L, Regan L., Structure 11(5), 2003
PMID: 12737816
Structure of TPR domain-peptide complexes: critical elements in the assembly of the Hsp70-Hsp90 multichaperone machine.
Scheufler C, Brinker A, Bourenkov G, Pegoraro S, Moroder L, Bartunik H, Hartl FU, Moarefi I., Cell 101(2), 2000
PMID: 10786835
Protein structure comparison by alignment of distance matrices.
Holm L, Sander C., J. Mol. Biol. 233(1), 1993
PMID: 8377180
Detection of protein assemblies in crystals
Krissinel, Lect. Notes Comput. Sci. 3695(), 2005

Shape complementarity at protein/protein interfaces.
Lawrence MC, Colman PM., J. Mol. Biol. 234(4), 1993
PMID: 8263940
Tetratricopeptide repeats in the type III secretion chaperone, LcrH: their role in substrate binding and secretion.
Edqvist PJ, Broms JE, Betts HJ, Forsberg A, Pallen MJ, Francis MS., Mol. Microbiol. 59(1), 2006
PMID: 16359316
Electrostatics of nanosystems: application to microtubules and the ribosome.
Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA., Proc. Natl. Acad. Sci. U.S.A. 98(18), 2001
PMID: 11517324
The superhelical TPR-repeat domain of O-linked GlcNAc transferase exhibits structural similarities to importin alpha.
Jinek M, Rehwinkel J, Lazarus BD, Izaurralde E, Hanover JA, Conti E., Nat. Struct. Mol. Biol. 11(10), 2004
PMID: 15361863
Crystal structure of PilF: functional implication in the type 4 pilus biogenesis in Pseudomonas aeruginosa.
Kim K, Oh J, Han D, Kim EE, Lee B, Kim Y., Biochem. Biophys. Res. Commun. 340(4), 2005
PMID: 16403447
Structural basis of the adaptive molecular recognition by MMP9.
Cha H, Kopetzki E, Huber R, Lanzendorfer M, Brandstetter H., J. Mol. Biol. 320(5), 2002
PMID: 12126625
Recognition of the rotavirus mRNA 3' consensus by an asymmetric NSP3 homodimer.
Deo RC, Groft CM, Rajashankar KR, Burley SK., Cell 108(1), 2002
PMID: 11792322
Novel protein-protein interactions of the Yersinia pestis type III secretion system elucidated with a matrix analysis by surface plasmon resonance and mass spectrometry.
Swietnicki W, O'Brien S, Holman K, Cherry S, Brueggemann E, Tropea JE, Hines HB, Waugh DS, Ulrich RG., J. Biol. Chem. 279(37), 2004
PMID: 15213222
TPR proteins: the versatile helix.
D'Andrea LD, Regan L., Trends Biochem. Sci. 28(12), 2003
PMID: 14659697
Mapping of a YscY binding domain within the LcrH chaperone that is required for regulation of Yersinia type III secretion.
Broms JE, Edqvist PJ, Carlsson KE, Forsberg A, Francis MS., J. Bacteriol. 187(22), 2005
PMID: 16267298
Anatomy of hot spots in protein interfaces.
Bogan AA, Thorn KS., J. Mol. Biol. 280(1), 1998
PMID: 9653027
Protein-protein interactions: a review of protein dimer structures.
Jones S, Thornton JM., Prog. Biophys. Mol. Biol. 63(1), 1995
PMID: 7746868
The peptide-substrate-binding domain of collagen prolyl 4-hydroxylases is a tetratricopeptide repeat domain with functional aromatic residues.
Pekkala M, Hieta R, Bergmann U, Kivirikko KI, Wierenga RK, Myllyharju J., J. Biol. Chem. 279(50), 2004
PMID: 15456751
[20] Processing of X-ray diffraction data collected in oscillation mode.
Otwinowski Z, Minor W., Meth. Enzymol. 276(), 1997
PMID: 27799103
Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants
Kabsch, J. Appl. Crystallogr. 26(), 1993
Likelihood-enhanced fast rotation functions.
Storoni LC, McCoy AJ, Read RJ., Acta Crystallogr. D Biol. Crystallogr. 60(Pt 3), 2004
PMID: 14993666
Comparison of sequence profiles. Strategies for structural predictions using sequence information.
Rychlewski L, Jaroszewski L, Li W, Godzik A., Protein Sci. 9(2), 2000
PMID: 10716175
PHENIX: building new software for automated crystallographic structure determination.
Adams PD, Grosse-Kunstleve RW, Hung LW, Ioerger TR, McCoy AJ, Moriarty NW, Read RJ, Sacchettini JC, Sauter NK, Terwilliger TC., Acta Crystallogr. D Biol. Crystallogr. 58(Pt 11), 2002
PMID: 12393927
Coot: model-building tools for molecular graphics.
Emsley P, Cowtan K., Acta Crystallogr. D Biol. Crystallogr. 60(Pt 12 Pt 1), 2004
PMID: 15572765
Refinement of macromolecular structures by the maximum-likelihood method.
Murshudov GN, Vagin AA, Dodson EJ., Acta Crystallogr. D Biol. Crystallogr. 53(Pt 3), 1997
PMID: 15299926
Crystallography & NMR system: A new software suite for macromolecular structure determination.
Brunger AT, Adams PD, Clore GM, DeLano WL, Gros P, Grosse-Kunstleve RW, Jiang JS, Kuszewski J, Nilges M, Pannu NS, Read RJ, Rice LM, Simonson T, Warren GL., Acta Crystallogr. D Biol. Crystallogr. 54(Pt 5), 1998
PMID: 9757107

DeLano, 2002
STRIDE: a web server for secondary structure assignment from known atomic coordinates of proteins.
Heinig M, Frishman D., Nucleic Acids Res. 32(Web Server issue), 2004
PMID: 15215436
Comparison of DNA sequences with protein sequences.
Pearson WR, Wood T, Zhang Z, Miller W., Genomics 46(1), 1997
PMID: 9403055
ESPript: analysis of multiple sequence alignments in PostScript.
Gouet P, Courcelle E, Stuart DI, Metoz F., Bioinformatics 15(4), 1999
PMID: 10320398
Transcription of the yop regulon from Y. enterocolitica requires trans acting pYV and chromosomal genes.
Cornelis G, Vanootegem JC, Sluiters C., Microb. Pathog. 2(5), 1987
PMID: 3507556

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

PMID: 18054956
PubMed | Europe PMC

Suchen in

Google Scholar