Saccadic flight strategy facilitates collision avoidance: closed-loop performance of a cyberfly

Lindemann JP, Weiss H, Möller R, Egelhaaf M (2008)
Biological Cybernetics 98(3): 213-227.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA 884.79 KB
Stichworte
behaviour; saccadic flight; model simulation; motion vision
Erscheinungsjahr
2008
Zeitschriftentitel
Biological Cybernetics
Band
98
Ausgabe
3
Seite(n)
213-227
ISSN
0340-1200
eISSN
1432-0770
Page URI
https://pub.uni-bielefeld.de/record/1592513

Zitieren

Lindemann JP, Weiss H, Möller R, Egelhaaf M. Saccadic flight strategy facilitates collision avoidance: closed-loop performance of a cyberfly. Biological Cybernetics. 2008;98(3):213-227.
Lindemann, J. P., Weiss, H., Möller, R., & Egelhaaf, M. (2008). Saccadic flight strategy facilitates collision avoidance: closed-loop performance of a cyberfly. Biological Cybernetics, 98(3), 213-227. https://doi.org/10.1007/s00422-007-0205-x
Lindemann, Jens Peter, Weiss, Holger, Möller, Ralf, and Egelhaaf, Martin. 2008. “Saccadic flight strategy facilitates collision avoidance: closed-loop performance of a cyberfly”. Biological Cybernetics 98 (3): 213-227.
Lindemann, J. P., Weiss, H., Möller, R., and Egelhaaf, M. (2008). Saccadic flight strategy facilitates collision avoidance: closed-loop performance of a cyberfly. Biological Cybernetics 98, 213-227.
Lindemann, J.P., et al., 2008. Saccadic flight strategy facilitates collision avoidance: closed-loop performance of a cyberfly. Biological Cybernetics, 98(3), p 213-227.
J.P. Lindemann, et al., “Saccadic flight strategy facilitates collision avoidance: closed-loop performance of a cyberfly”, Biological Cybernetics, vol. 98, 2008, pp. 213-227.
Lindemann, J.P., Weiss, H., Möller, R., Egelhaaf, M.: Saccadic flight strategy facilitates collision avoidance: closed-loop performance of a cyberfly. Biological Cybernetics. 98, 213-227 (2008).
Lindemann, Jens Peter, Weiss, Holger, Möller, Ralf, and Egelhaaf, Martin. “Saccadic flight strategy facilitates collision avoidance: closed-loop performance of a cyberfly”. Biological Cybernetics 98.3 (2008): 213-227.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T08:48:02Z
MD5 Prüfsumme
2dfad1f39daf5c4cc60bd11ebd2c7f1c


16 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Local motion adaptation enhances the representation of spatial structure at EMD arrays.
Li J, Lindemann JP, Egelhaaf M., PLoS Comput Biol 13(12), 2017
PMID: 29281631
A spatially informative optic flow model of bee colony with saccadic flight strategy for global optimization.
Das S, Biswas S, Panigrahi BK, Kundu S, Basu D., IEEE Trans Cybern 44(10), 2014
PMID: 25222729
Spectral inputs and ocellar contributions to a pitch-sensitive descending neuron in the honeybee.
Hung YS, van Kleef JP, Stange G, Ibbotson MR., J Neurophysiol 109(4), 2013
PMID: 23197452
Discriminating external and internal causes for heading changes in freely flying Drosophila.
Censi A, Straw AD, Sayaman RW, Murray RM, Dickinson MH., PLoS Comput Biol 9(2), 2013
PMID: 23468601
Texture dependence of motion sensing and free flight behavior in blowflies.
Lindemann JP, Egelhaaf M., Front Behav Neurosci 6(), 2012
PMID: 23335890
Spatial vision in insects is facilitated by shaping the dynamics of visual input through behavioral action.
Egelhaaf M, Boeddeker N, Kern R, Kurtz R, Lindemann JP., Front Neural Circuits 6(), 2012
PMID: 23269913
Contrast-independent biologically inspired motion detection.
Babies B, Lindemann JP, Egelhaaf M, Möller R., Sensors (Basel) 11(3), 2011
PMID: 22163800
Visual response properties of neck motor neurons in the honeybee.
Hung YS, van Kleef JP, Ibbotson MR., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 197(12), 2011
PMID: 21909972
Reconstruction of virtual neural circuits in an insect brain.
Namiki S, Haupt SS, Kazawa T, Takashima A, Ikeno H, Kanzaki R., Front Neurosci 3(2), 2009
PMID: 20011143

56 References

Daten bereitgestellt von Europe PubMed Central.

Visual stimulation of saccades in magnetically tethered Drosophila.
Bender JA, Dickinson MH., J. Exp. Biol. 209(Pt 16), 2006
PMID: 16888065

N, Proc R Soc Lond B 270(), 2003

N, Proc R Soc Lond B 270(), 2003

N, J Comp Physiol A 25(), 2005

A, 2004

A, J Comp Physiol A 188(), 2002

A, Model Stud Vis Res 43(), 2003

E, 1984

AUTHOR UNKNOWN, 0

HJ, 1997

RO, J Opt Soc Am A 18(), 2001

H, J Comp Physiol A 145(), 1981

M, 2006

N, Phil Trans R Soc Lond B 337(), 1992
Insect-inspired estimation of egomotion.
Franz MO, Chahl JS, Krapp HG., Neural Comput 16(11), 2004
PMID: 15476600

AUTHOR UNKNOWN, 0
Matter arising: off-targets and genome-scale RNAi screens in Drosophila.
Perrimon N, Mathey-Prevot B., Fly (Austin) 1(1), 2007
PMID: 18705022

KG, J Comp Physiol 99(), 1975

RR, Auton Robot 7(), 1999

K, Biol Cybern 45(), 1982

K, Biol Cybern 46(), 1982

K, 1984

K, 1993

AUTHOR UNKNOWN, 0

M, J Gen Physiol 103(), 1995
Encoding of naturalistic optic flow by a population of blowfly motion-sensitive neurons.
Karmeier K, van Hateren JH, Kern R, Egelhaaf M., J. Neurophysiol. 96(3), 2006
PMID: 16687623
Neuronal processing of behaviourally generated optic flow: experiments and model simulations.
Kern R, Lutterklas M, Petereit C, Lindemann JP, Egelhaaf M., Network 12(3), 2001
PMID: 11563534
Function of a fly motion-sensitive neuron matches eye movements during free flight.
Kern R, van Hateren JH, Michaelis C, Lindemann JP, Egelhaaf M., PLoS Biol. 3(6), 2005
PMID: 15884977
Facts on optic flow.
Koenderink JJ, van Doorn AJ., Biol Cybern 56(4), 1987
PMID: 3607100
The visually controlled prey-capture behaviour of the European mantispid Mantispa styriaca.
Kral K, Vernik M, Devetak D., J. Exp. Biol. 203(Pt 14), 2000
PMID: 10862724

HG, 2000
Binocular contributions to optic flow processing in the fly visual system.
Krapp HG, Hengstenberg R, Egelhaaf M., J. Neurophysiol. 85(2), 2001
PMID: 11160507

JP, Vis Res 43(), 2003
On the computations analyzing natural optic flow: quantitative model analysis of the blowfly motion vision pathway.
Lindemann JP, Kern R, van Hateren JH, Ritter H, Egelhaaf M., J. Neurosci. 25(27), 2005
PMID: 16000634

AUTHOR UNKNOWN, 0

MB, Phil Trans R Soc Lond A 361(), 2003

AUTHOR UNKNOWN, 0
Stabilizing gaze in flying blowflies.
Schilstra C, van Hateren JH., Nature 395(6703), 1998
PMID: 9790186

C, J Exp Biol 202(), 1999
The locust's use of motion parallax to measure distance.
Sobel EC., J. Comp. Physiol. A 167(5), 1990
PMID: 2074547

PJ, Biol Cybern 71(), 1994
Honeybee navigation en route to the goal: visual flight control and odometry
Srinivasan M, Zhang S, Lehrer M, Collett T., J. Exp. Biol. 199(Pt 1), 1996
PMID: 9317712
Visual navigation in flying insects.
Srinivasan MV, Zhang SW., Int. Rev. Neurobiol. 44(), 2000
PMID: 10605642
Function and coding in the blowfly H1 neuron during naturalistic optic flow.
van Hateren JH, Kern R, Schwerdtfeger G, Egelhaaf M., J. Neurosci. 25(17), 2005
PMID: 15858060

JH, J Exp Biol 202(), 1999

A-K, Phil Trans Roy Soc Lond, B 351(), 1996

A-K, Vis Res 40(), 2000
Temporal precision of the encoding of motion information by visual interneurons.
Warzecha AK, Kretzberg J, Egelhaaf M., Curr. Biol. 8(7), 1998
PMID: 9545194

B, Arthrop Struct Develop 33(), 2004

J-C, IEEE Trans Robot 22(), 2006
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 18180948
PubMed | Europe PMC

Suchen in

Google Scholar