Function of antioxidant enzymes and metabolites during maturation of pea fruits

Matamoros MA, Loscos J, Dietz K-J, Aparicio-Tejo PM, Becana M (2010)
JOURNAL OF EXPERIMENTAL BOTANY 61(1): 87-97.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Matamoros, Manuel A.; Loscos, Jorge; Dietz, Karl-JosefUniBi; Aparicio-Tejo, Pedro M.; Becana, Manuel
Abstract / Bemerkung
In plant cells, antioxidants keep reactive oxygen species at low concentrations, avoiding oxidative damage while allowing them to play crucial functions in signal transduction. However, little is known about the role of antioxidants during fruit maturation, especially in legumes. Snap pea (Pisum sativum) plants, which have edible fruits, were grown under nodulating and non-nodulating conditions. Fruits were classified in three maturity stages and antioxidants were determined in the seeds and seedless pods. Maturation or prolonged storage of fruits at 25 degrees C led to a decline in antioxidant activities and metabolites and in g-glutamylcysteine synthetase protein. Notable exceptions were superoxide dismutase activity and glutathione peroxidase protein, which increased in one or both of these processes. During maturation, cytosolic peroxiredoxin decreased in seeds but increased in pods, and ascorbate oxidase activity was largely reduced in seeds. In stored fruits, ascorbate oxidase activity was nearly abolished in seeds but doubled in pods. It is concluded that symbiotic nitrogen fixation is as effective as nitrogen fertilization in maintaining the antioxidant capacity of pea fruits and that, contrary to climacteric fruits, a general decrease in antioxidants during maturation does not involve oxidative stress. Results underscore the importance of the antioxidant system in reproductive organs and point to ascorbate-glutathione metabolism and cytosolic peroxiredoxin as key players in pea fruit development.
Stichworte
ascorbate; Antioxidants; fruit maturation; fruit storage; glutathione; nitrogen fixation; pea; peroxiredoxins
Erscheinungsjahr
2010
Zeitschriftentitel
JOURNAL OF EXPERIMENTAL BOTANY
Band
61
Ausgabe
1
Seite(n)
87-97
ISSN
0022-0957
eISSN
1460-2431
Page URI
https://pub.uni-bielefeld.de/record/1589308

Zitieren

Matamoros MA, Loscos J, Dietz K-J, Aparicio-Tejo PM, Becana M. Function of antioxidant enzymes and metabolites during maturation of pea fruits. JOURNAL OF EXPERIMENTAL BOTANY. 2010;61(1):87-97.
Matamoros, M. A., Loscos, J., Dietz, K. - J., Aparicio-Tejo, P. M., & Becana, M. (2010). Function of antioxidant enzymes and metabolites during maturation of pea fruits. JOURNAL OF EXPERIMENTAL BOTANY, 61(1), 87-97. https://doi.org/10.1093/jxb/erp285
Matamoros, Manuel A., Loscos, Jorge, Dietz, Karl-Josef, Aparicio-Tejo, Pedro M., and Becana, Manuel. 2010. “Function of antioxidant enzymes and metabolites during maturation of pea fruits”. JOURNAL OF EXPERIMENTAL BOTANY 61 (1): 87-97.
Matamoros, M. A., Loscos, J., Dietz, K. - J., Aparicio-Tejo, P. M., and Becana, M. (2010). Function of antioxidant enzymes and metabolites during maturation of pea fruits. JOURNAL OF EXPERIMENTAL BOTANY 61, 87-97.
Matamoros, M.A., et al., 2010. Function of antioxidant enzymes and metabolites during maturation of pea fruits. JOURNAL OF EXPERIMENTAL BOTANY, 61(1), p 87-97.
M.A. Matamoros, et al., “Function of antioxidant enzymes and metabolites during maturation of pea fruits”, JOURNAL OF EXPERIMENTAL BOTANY, vol. 61, 2010, pp. 87-97.
Matamoros, M.A., Loscos, J., Dietz, K.-J., Aparicio-Tejo, P.M., Becana, M.: Function of antioxidant enzymes and metabolites during maturation of pea fruits. JOURNAL OF EXPERIMENTAL BOTANY. 61, 87-97 (2010).
Matamoros, Manuel A., Loscos, Jorge, Dietz, Karl-Josef, Aparicio-Tejo, Pedro M., and Becana, Manuel. “Function of antioxidant enzymes and metabolites during maturation of pea fruits”. JOURNAL OF EXPERIMENTAL BOTANY 61.1 (2010): 87-97.

12 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Morpho-anatomical, physiological and biochemical changes in rubber tree seeds.
Souza GA, Dias DCFS, Pimenta TM, Cardoso AÁ, Pires RMO, Alvarenga AP, Pícoli EAT., An Acad Bras Cienc 90(2), 2018
PMID: 29898112
Dietary intake and age at natural menopause: results from the UK Women's Cohort Study.
Dunneram Y, Greenwood DC, Burley VJ, Cade JE., J Epidemiol Community Health 72(8), 2018
PMID: 29712719
Similarities between plant traits based on their connection to underlying gene functions.
Nap JP, Sanchez-Perez GF, van Dijk ADJ., PLoS One 12(8), 2017
PMID: 28797052
Five omic technologies are concordant in differentiating the biochemical characteristics of the berries of five grapevine (Vitis vinifera L.) cultivars.
Ghan R, Van Sluyter SC, Hochberg U, Degu A, Hopper DW, Tillet RL, Schlauch KA, Haynes PA, Fait A, Cramer GR., BMC Genomics 16(), 2015
PMID: 26573226
Ascorbate as seen through plant evolution: the rise of a successful molecule?
Gest N, Gautier H, Stevens R., J Exp Bot 64(1), 2013
PMID: 23109712
Why fruits are rich in antioxidants? An opinion review.
Grover AK., Can J Physiol Pharmacol 91(3), 2013
PMID: 23537432
The Cd‐tolerant rice mutant cadH‐5 is a high Cd accumulator and shows enhanced antioxidant activity
Shen G, Zhu C, Shangguan L, Du Q., Journal of plant nutrition and soil science = Zeitschrift fur Pflanzenernahrung und Bodenkunde. 175(2), 2012
PMID: IND44733090
Peroxiredoxins in plants and cyanobacteria.
Dietz KJ., Antioxid Redox Signal 15(4), 2011
PMID: 21194355
Peroxiredoxins and NADPH-dependent thioredoxin systems in the model legume Lotus japonicus.
Tovar-Méndez A, Matamoros MA, Bustos-Sanmamed P, Dietz KJ, Cejudo FJ, Rouhier N, Sato S, Tabata S, Becana M., Plant Physiol 156(3), 2011
PMID: 21562331

56 References

Daten bereitgestellt von Europe PubMed Central.

Ascorbic acid: much more than just an antioxidant.
Arrigoni O, De Tullio MC., Biochim. Biophys. Acta 1569(1-3), 2002
PMID: 11853951
Chloroplasts: formation of active oxygen and its scavenging
Asada K., 1984
Effect of maturity on carbohydrate changes in sugar snap pea pods during storage
Basterrechea M, Hicks JR., 1991
Induction and control of chromoplast-specific carotenoid genes by oxidative stress.
Bouvier F, Backhaus RA, Camara B., J. Biol. Chem. 273(46), 1998
PMID: 9804838
Involvement of hydrogen peroxide in the regulation of senescence in pear.
Brennan T, Frenkel C., Plant Physiol. 59(3), 1977
PMID: 16659863
Subcellular Localization of Oxygen Defense Enzymes in Soybean (Glycine max [L.] Merr.) Root Nodules.
Dalton DA, Baird LM, Langeberg L, Taugher CY, Anyan WR, Vance CP, Sarath G., Plant Physiol. 102(2), 1993
PMID: 12231836
Enzymatic reactions of ascorbate and glutathione that prevent peroxide damage in soybean root nodules
Dalton DA, Russell SA, Hanus FJ, Pascoe GA, Evans HJ., 1986
The proteome of seed development in the model legume Lotus japonicus.
Dam S, Laursen BS, Ornfelt JH, Jochimsen B, Staerfeldt HH, Friis C, Nielsen K, Goffard N, Besenbacher S, Krusell L, Sato S, Tabata S, Thogersen IB, Enghild JJ, Stougaard J., Plant Physiol. 149(3), 2009
PMID: 19129418
Identification and analysis of proteins sharing dehydroascorbate reductase activity
De MC, Paciolla C, Arrigoni O., 2002
Melon ascorbate oxidase: cloning of a multigene family, induction during fruit development and repression by wounding.
Diallinas G, Pateraki I, Sanmartin M, Scossa A, Stilianou E, Panopoulos NJ, Kanellis AK., Plant Mol. Biol. 34(5), 1997
PMID: 9278166
Plant peroxiredoxins.
Dietz KJ., Annu Rev Plant Biol 54(), 2003
PMID: 14502986
Enhanced tolerance to ozone and drought stresses in transgenic tobacco overexpressing dehydroascorbate reductase in cytosol.
Eltayeb AminElsadig, Kawano Naoyoshi, Badawi GhaziHamid, Kaminaka Hironori, Sanekata Takeshi, Morishima Isao, Shibahara Toshiyuki, Inanaga Shinobu, Tanaka Kiyoshi., Physiol Plant 127(1), 2006
PMID: IND43796396
Regulation of ascorbate oxidase expression in pumpkin by auxin and copper.
Esaka M, Fujisawa K, Goto M, Kisu Y., Plant Physiol. 100(1), 1992
PMID: 16652952
The mitochondrial type II peroxiredoxin F is essential for redox homeostasis and root growth of Arabidopsis thaliana under stress.
Finkemeier I, Goodman M, Lamkemeyer P, Kandlbinder A, Sweetlove LJ, Dietz KJ., J. Biol. Chem. 280(13), 2005
PMID: 15632145
N2 Fixation, Carbon Metabolism, and Oxidative Damage in Nodules of Dark-Stressed Common Bean Plants.
Gogorcena Y, Gordon AJ, Escuredo PR, Minchin FR, Witty JF, Moran JF, Becana M., Plant Physiol. 113(4), 1997
PMID: 12223669
Legumes: importance and constraints to greater use.
Graham PH, Vance CP., Plant Physiol. 131(3), 2003
PMID: 12644639
Redox regulation of peroxiredoxin and proteinases by ascorbate and thiols during pea root nodule senescence.
Groten K, Dutilleul C, van Heerden PD, Vanacker H, Bernard S, Finkemeier I, Dietz KJ, Foyer CH., FEBS Lett. 580(5), 2006
PMID: 16455082

Halliwell B, Gutteridge JMC., 2007
Thiol-based regulation of redox-active glutamate-cysteine ligase from Arabidopsis thaliana.
Hicks LM, Cahoon RE, Bonner ER, Rivard RS, Sheffield J, Jez JM., Plant Cell 19(8), 2007
PMID: 17766407
Divergent light-, ascorbate-, and oxidative stress-dependent regulation of expression of the peroxiredoxin gene family in Arabidopsis.
Horling F, Lamkemeyer P, Konig J, Finkemeier I, Kandlbinder A, Baier M, Dietz KJ., Plant Physiol. 131(1), 2003
PMID: 12529539
Oxidative damage in pea plants exposed to water deficit or paraquat
Iturbe-Ormaetxe I, Escuredo PR, Arrese-Igor C, Becana M., 1998
Changes in oxidative processes and components of the antioxidant system during tomato fruit ripening.
Jimenez A, Creissen G, Kular B, Firmin J, Robinson S, Verhoeyen M, Mullineaux P., Planta 214(5), 2001
PMID: 11882944
Changes in the antioxidative systems in mitochondria during ripening of pepper fruits
Jiménez A, Gómez JM, Navarro E, Sevilla F., 2002
Antioxidant systems and their relationship with the response of pepper fruits to storage at 20 degrees C.
Jimenez A, Romojaro F, Gomez JM, Llanos MR, Sevilla F., J. Agric. Food Chem. 51(21), 2003
PMID: 14518958
Peroxiredoxin Q of Arabidopsis thaliana is attached to the thylakoids and functions in context of photosynthesis.
Lamkemeyer P, Laxa M, Collin V, Li W, Finkemeier I, Schottler MA, Holtkamp V, Tognetti VB, Issakidis-Bourguet E, Kandlbinder A, Weis E, Miginiac-Maslow M, Dietz KJ., Plant J. 45(6), 2006
PMID: 16507087
Expression of Ascorbic Acid Oxidase in Zucchini Squash (Cucurbita pepo L.).
Lin LS, Varner JE., Plant Physiol. 96(1), 1991
PMID: 16668145
Postharvest chilling induces oxidative stress response in the dwarf tomato cultivar Micro-Tom.
Malacrida Cecilia, Valle EstelaM, Boggio SilvanaB., Physiol Plant 127(1), 2006
PMID: IND43796372
Biochemistry and molecular biology of antioxidants in the rhizobia-legume symbiosis.
Matamoros MA, Dalton DA, Ramos J, Clemente MR, Rubio MC, Becana M., Plant Physiol. 133(2), 2003
PMID: 14555779
Glutathione and homoglutathione synthesis in legume root nodules.
Matamoros MA, Moran JF, Iturbe-Ormaetxe I, Rubio MC, Becana M., Plant Physiol. 121(3), 1999
PMID: 10557236
Evidence for posttranscriptional activation of γ-glutamylcysteine synthetase during plant stress responses
May MJ, Vernoux T, Sánchez-Fernández R, Van M, Inzé D., 1998
Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein).
McCord JM, Fridovich I., J. Biol. Chem. 244(22), 1969
PMID: 5389100
Reactive oxygen gene network of plants.
Mittler R, Vanderauwera S, Gollery M, Van Breusegem F., Trends Plant Sci. 9(10), 2004
PMID: 15465684
Hydrogen peroxide is scavenged by ascorbate specific peroxidase is spinach chloroplasts
Nakano Y, Asada K., 1981
Plant glutathione peroxidases are functional peroxiredoxins distributed in several subcellular compartments and regulated during biotic and abiotic stresses.
Navrot N, Collin V, Gualberto J, Gelhaye E, Hirasawa M, Rey P, Knaff DB, Issakidis E, Jacquot JP, Rouhier N., Plant Physiol. 142(4), 2006
PMID: 17071643
Antioxidative enzymes from chloroplasts, mitochondria, and peroxisomes during leaf senescence of nodulated pea plants.
Palma JM, Jimenez A, Sandalio LM, Corpas FJ, Lundqvist M, Gomez M, Sevilla F, del Rio LA., J. Exp. Bot. 57(8), 2006
PMID: 16698815
The function of ascorbate oxidase in tobacco.
Pignocchi C, Fletcher JM, Wilkinson JE, Barnes JD, Foyer CH., Plant Physiol. 132(3), 2003
PMID: 12857842
The glutathione peroxidase gene family of Lotus japonicus: characterization of genomic clones, expression analyses and immunolocalization in legumes.
Ramos J, Matamoros MA, Naya L, James EK, Rouhier N, Sato S, Tabata S, Becana M., New Phytol. 181(1), 2008
PMID: 18826485
Maturation and ripening of fruit of Amelanchier alnifolia Nutt. are accompanied by increasing oxidative stress
Rogiers SY, Kumar GNM, Knowles NR., 1998
Effects of water stress on antioxidant enzymes of leaves and nodules of transgenic alfalfa overexpressing superoxide dismutases.
Rubio MC, Gonzalez EM, Minchin FR, Webb KJ, Arrese-Igor C, Ramos J, Becana M., Physiol Plant 115(4), 2002
PMID: 12121459
Differential expression of the ascorbate oxidase multigene family during fruit development and in response to stress.
Sanmartin M, Pateraki I, Chatzopoulou F, Kanellis AK., Planta 225(4), 2007
PMID: 17021803
Redox environment of the cell as viewed through the redox state of the glutathione disulphide/glutathione couple
Schafer FQ, Buettner GR., 2001
Tomato fruit ascorbic acid content is linked with monodehydroascorbate reductase activity and tolerance to chilling stress
Stevens R, Page D, Gouble B, Garchery C, Zamir D, Causse M., 2008
Roles for redox regulation in leaf senescence of pea plants grown on different sources of nitrogen nutrition.
Vanacker H, Sandalio L, Jimenez A, Palma JM, Corpas FJ, Meseguer V, Gomez M, Sevilla F, Leterrier M, Foyer CH, del Rio LA., J. Exp. Bot. 57(8), 2006
PMID: 16760420
Unraveling the tapestry of networks involving reactive oxygen species in plants.
Van Breusegem F, Bailey-Serres J, Mittler R., Plant Physiol. 147(3), 2008
PMID: 18612075
Suppressed expression of the apoplastic ascorbate oxidase gene increases salt tolerance in tobacco and Arabidopsis plants.
Yamamoto A, Bhuiyan MN, Waditee R, Tanaka Y, Esaka M, Oba K, Jagendorf AT, Takabe T., J. Exp. Bot. 56(417), 2005
PMID: 15883131
A simple colorimetric method for determination of hydrogen peroxide in plant tissues
Zhou B, Wang J, Guo Z, Tan H, Zhu X., 2006
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 19822534
PubMed | Europe PMC

Suchen in

Google Scholar