Functional genomics of pH homeostasis in Corynebacterium glutamicum revealed novel links between pH response, oxidative stress, iron homeostasis and methionine synthesis

Follmann M, Ochrombel I, Kraemer R, Troetschel C, Poetsch A, Rückert C, Hueser A, Persicke M, Seiferling D, Kalinowski J, Marin K (2009)
BMC Genomics 10(1): 621.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA
Autor*in
Follmann, Martin; Ochrombel, Ines; Kraemer, Reinhard; Troetschel, Christian; Poetsch, Ansgar; Rückert, ChristianUniBi ; Hueser, Andrea; Persicke, MarcusUniBi; Seiferling, Dominic; Kalinowski, JörnUniBi; Marin, Kay
Abstract / Bemerkung
Background: The maintenance of internal pH in bacterial cells is challenged by natural stress conditions, during host infection or in biotechnological production processes. Comprehensive transcriptomic and proteomic analyses has been conducted in several bacterial model systems, yet questions remain as to the mechanisms of pH homeostasis. Results: Here we present the comprehensive analysis of pH homeostasis in C. glutamicum, a bacterium of industrial importance. At pH values between 6 and 9 effective maintenance of the internal pH at 7.5 +/- 0.5 pH units was found. By DNA microarray analyses differential mRNA patterns were identified. The expression profiles were validated and extended by 1D-LC-ESI-MS/MS based quantification of soluble and membrane proteins. Regulators involved were identified and thereby participation of numerous signaling modules in pH response was found. The functional analysis revealed for the first time the occurrence of oxidative stress in C. glutamicum cells at neutral and low pH conditions accompanied by activation of the iron starvation response. Intracellular metabolite pool analysis unraveled inhibition of the TCA and other pathways at low pH. Methionine and cysteine synthesis were found to be activated via the McbR regulator, cysteine accumulation was observed and addition of cysteine was shown to be toxic under acidic conditions. Conclusions: Novel limitations for C. glutamicum at non-optimal pH values were identified by a comprehensive analysis on the level of the transcriptome, proteome, and metabolome indicating a functional link between pH acclimatization, oxidative stress, iron homeostasis, and metabolic alterations. The results offer new insights into bacterial stress physiology and new starting points for bacterial strain design or pathogen defense.
Erscheinungsjahr
2009
Zeitschriftentitel
BMC Genomics
Band
10
Ausgabe
1
Seite(n)
621
ISSN
1471-2164
Page URI
https://pub.uni-bielefeld.de/record/1588891

Zitieren

Follmann M, Ochrombel I, Kraemer R, et al. Functional genomics of pH homeostasis in Corynebacterium glutamicum revealed novel links between pH response, oxidative stress, iron homeostasis and methionine synthesis. BMC Genomics. 2009;10(1):621.
Follmann, M., Ochrombel, I., Kraemer, R., Troetschel, C., Poetsch, A., Rückert, C., Hueser, A., et al. (2009). Functional genomics of pH homeostasis in Corynebacterium glutamicum revealed novel links between pH response, oxidative stress, iron homeostasis and methionine synthesis. BMC Genomics, 10(1), 621. https://doi.org/10.1186/1471-2164-10-621
Follmann, Martin, Ochrombel, Ines, Kraemer, Reinhard, Troetschel, Christian, Poetsch, Ansgar, Rückert, Christian, Hueser, Andrea, et al. 2009. “Functional genomics of pH homeostasis in Corynebacterium glutamicum revealed novel links between pH response, oxidative stress, iron homeostasis and methionine synthesis”. BMC Genomics 10 (1): 621.
Follmann, M., Ochrombel, I., Kraemer, R., Troetschel, C., Poetsch, A., Rückert, C., Hueser, A., Persicke, M., Seiferling, D., Kalinowski, J., et al. (2009). Functional genomics of pH homeostasis in Corynebacterium glutamicum revealed novel links between pH response, oxidative stress, iron homeostasis and methionine synthesis. BMC Genomics 10, 621.
Follmann, M., et al., 2009. Functional genomics of pH homeostasis in Corynebacterium glutamicum revealed novel links between pH response, oxidative stress, iron homeostasis and methionine synthesis. BMC Genomics, 10(1), p 621.
M. Follmann, et al., “Functional genomics of pH homeostasis in Corynebacterium glutamicum revealed novel links between pH response, oxidative stress, iron homeostasis and methionine synthesis”, BMC Genomics, vol. 10, 2009, pp. 621.
Follmann, M., Ochrombel, I., Kraemer, R., Troetschel, C., Poetsch, A., Rückert, C., Hueser, A., Persicke, M., Seiferling, D., Kalinowski, J., Marin, K.: Functional genomics of pH homeostasis in Corynebacterium glutamicum revealed novel links between pH response, oxidative stress, iron homeostasis and methionine synthesis. BMC Genomics. 10, 621 (2009).
Follmann, Martin, Ochrombel, Ines, Kraemer, Reinhard, Troetschel, Christian, Poetsch, Ansgar, Rückert, Christian, Hueser, Andrea, Persicke, Marcus, Seiferling, Dominic, Kalinowski, Jörn, and Marin, Kay. “Functional genomics of pH homeostasis in Corynebacterium glutamicum revealed novel links between pH response, oxidative stress, iron homeostasis and methionine synthesis”. BMC Genomics 10.1 (2009): 621.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T08:48:01Z
MD5 Prüfsumme
cb4b7e8c069bc9c09e66b93115c45029


34 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

RNase E/G-dependent degradation of metE mRNA, encoding methionine synthase, in Corynebacterium glutamicum.
Endo S, Maeda T, Kawame T, Iwai N, Wachi M., J Gen Appl Microbiol 65(1), 2019
PMID: 29984738
Function of alkyl hydroperoxidase AhpD in resistance to oxidative stress in Corynebacterium glutamicum.
Su T, Si M, Zhao Y, Yao S, Che C, Liu Y, Chen C., J Gen Appl Microbiol 65(2), 2019
PMID: 30249939
Identification and validation of appropriate reference genes for qRT-PCR analysis in Corynebacterium glutamicum.
Wang X, Peng F, Dong G, Sun Y, Dai X, Yang Y, Liu X, Bai Z., FEMS Microbiol Lett 365(8), 2018
PMID: 29420726
Catalytically active inclusion bodies of L-lysine decarboxylase from E. coli for 1,5-diaminopentane production.
Kloss R, Limberg MH, Mackfeld U, Hahn D, Grünberger A, Jäger VD, Krauss U, Oldiges M, Pohl M., Sci Rep 8(1), 2018
PMID: 29643457
Deciphering the Adaptation of Corynebacterium glutamicum in Transition from Aerobiosis via Microaerobiosis to Anaerobiosis.
Lange J, Münch E, Müller J, Busche T, Kalinowski J, Takors R, Blombach B., Genes (Basel) 9(6), 2018
PMID: 29899275
Structural snapshots of OxyR reveal the peroxidatic mechanism of H2O2 sensing.
Pedre B, Young D, Charlier D, Mourenza Á, Rosado LA, Marcos-Pascual L, Wahni K, Martens E, G de la Rubia A, Belousov VV, Mateos LM, Messens J., Proc Natl Acad Sci U S A 115(50), 2018
PMID: 30463959
Metabolic profile of 1,5-diaminopentane producing Corynebacterium glutamicum under scale-down conditions: Blueprint for robustness to bioreactor inhomogeneities.
Limberg MH, Schulte J, Aryani T, Mahr R, Baumgart M, Bott M, Wiechert W, Oldiges M., Biotechnol Bioeng 114(3), 2017
PMID: 27641904
Isoprenoid Pyrophosphate-Dependent Transcriptional Regulation of Carotenogenesis in Corynebacterium glutamicum.
Henke NA, Heider SAE, Hannibal S, Wendisch VF, Peters-Wendisch P., Front Microbiol 8(), 2017
PMID: 28484430
pH fluctuations imperil the robustness of C. glutamicum to short term oxygen limitation.
Limberg MH, Joachim M, Klein B, Wiechert W, Oldiges M., J Biotechnol 259(), 2017
PMID: 28837821
Physiological effects of pH gradients on Escherichia coli during plasmid DNA production.
Cortés JT, Flores N, Bolívar F, Lara AR, Ramírez OT., Biotechnol Bioeng 113(3), 2016
PMID: 26301871
In vitro functional characterization of the Na+/H+ antiporters in Corynebacterium glutamicum.
Xu N, Wang L, Cheng H, Liu Q, Liu J, Ma Y., FEMS Microbiol Lett 363(3), 2016
PMID: 26667218
Mycothiol peroxidase MPx protects Corynebacterium glutamicum against acid stress by scavenging ROS.
Wang T, Gao F, Kang Y, Zhao C, Su T, Li M, Si M, Shen X., Biotechnol Lett 38(7), 2016
PMID: 27053080
Mesophilic Acidogenesis of Food Waste-Recycling Wastewater: Effects of Hydraulic Retention Time, pH, and Temperature.
Han G, Shin SG, Lee J, Lee C, Jo M, Hwang S., Appl Biochem Biotechnol 180(5), 2016
PMID: 27272604
Metabolic engineering of Corynebacterium glutamicum strain ATCC13032 to produce L-methionine.
Qin T, Hu X, Hu J, Wang X., Biotechnol Appl Biochem 62(4), 2015
PMID: 25196586
Anaerobic growth of Corynebacterium glutamicum via mixed-acid fermentation.
Michel A, Koch-Koerfges A, Krumbach K, Brocker M, Bott M., Appl Environ Microbiol 81(21), 2015
PMID: 26276118
3-Amino-4-hydroxybenzoic acid production from sweet sorghum juice by recombinant Corynebacterium glutamicum.
Kawaguchi H, Sasaki K, Uematsu K, Tsuge Y, Teramura H, Okai N, Nakamura-Tsuruta S, Katsuyama Y, Sugai Y, Ohnishi Y, Hirano K, Sazuka T, Ogino C, Kondo A., Bioresour Technol 198(), 2015
PMID: 26409852
Non-Invasive Microbial Metabolic Activity Sensing at Single Cell Level by Perfusion of Calcein Acetoxymethyl Ester.
Krämer CE, Singh A, Helfrich S, Grünberger A, Wiechert W, Nöh K, Kohlheyer D., PLoS One 10(10), 2015
PMID: 26513257
Assessment of robustness against dissolved oxygen/substrate oscillations for C. glutamicum DM1933 in two-compartment bioreactor.
Käß F, Hariskos I, Michel A, Brandt HJ, Spann R, Junne S, Wiechert W, Neubauer P, Oldiges M., Bioprocess Biosyst Eng 37(6), 2014
PMID: 24218302
Characterization of shikimate dehydrogenase homologues of Corynebacterium glutamicum.
Kubota T, Tanaka Y, Hiraga K, Inui M, Yukawa H., Appl Microbiol Biotechnol 97(18), 2013
PMID: 23306642
Conversion of Corynebacterium glutamicum from an aerobic respiring to an aerobic fermenting bacterium by inactivation of the respiratory chain.
Koch-Koerfges A, Pfelzer N, Platzen L, Oldiges M, Bott M., Biochim Biophys Acta 1827(6), 2013
PMID: 23416842
Identification of the membrane protein SucE and its role in succinate transport in Corynebacterium glutamicum.
Huhn S, Jolkver E, Krämer R, Marin K., Appl Microbiol Biotechnol 89(2), 2011
PMID: 20809072
Proteomics of corynebacteria: From biotechnology workhorses to pathogens.
Poetsch A, Haussmann U, Burkovski A., Proteomics 11(15), 2011
PMID: 21674800
L-Glutamine as a nitrogen source for Corynebacterium glutamicum: derepression of the AmtR regulon and implications for nitrogen sensing.
Rehm N, Georgi T, Hiery E, Degner U, Schmiedl A, Burkovski A, Bott M., Microbiology 156(pt 10), 2010
PMID: 20656783
Corynebacterium glutamicum exhibits a membrane-related response to a small ferrocene-conjugated antimicrobial peptide.
Fränzel B, Frese C, Penkova M, Metzler-Nolte N, Bandow JE, Wolters DA., J Biol Inorg Chem 15(8), 2010
PMID: 20658302

56 References

Daten bereitgestellt von Europe PubMed Central.

Regulation of cytoplasmic pH in bacteria.
Booth IR., Microbiol. Rev. 49(4), 1985
PMID: 3912654
L-Glutamate Production
AUTHOR UNKNOWN, 2005
L-Lysine Production
AUTHOR UNKNOWN, 2005
Alkaline pH homeostasis in bacteria: new insights.
Padan E, Bibi E, Ito M, Krulwich TA., Biochim. Biophys. Acta 1717(2), 2005
PMID: 16277975
Alkalitolerance: a biological function for a multidrug transporter in pH homeostasis.
Lewinson O, Padan E, Bibi E., Proc. Natl. Acad. Sci. U.S.A. 101(39), 2004
PMID: 15371593
Surviving the acid test: responses of gram-positive bacteria to low pH.
Cotter PD, Hill C., Microbiol. Mol. Biol. Rev. 67(3), 2003
PMID: 12966143
The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins.
Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, Dusch N, Eggeling L, Eikmanns BJ, Gaigalat L, Goesmann A, Hartmann M, Huthmacher K, Kramer R, Linke B, McHardy AC, Meyer F, Mockel B, Pfefferle W, Puhler A, Rey DA, Ruckert C, Rupp O, Sahm H, Wendisch VF, Wiegrabe I, Tauch A., J. Biotechnol. 104(1-3), 2003
PMID: 12948626
Transcriptional analysis of the F0F1 ATPase operon of Corynebacterium glutamicum ATCC 13032 reveals strong induction by alkaline pH.
Barriuso-Iglesias M, Barreiro C, Flechoso F, Martin JF., Microbiology (Reading, Engl.) 152(Pt 1), 2006
PMID: 16385111
Gene expression analysis of Corynebacterium glutamicum subjected to long-term lactic acid adaptation.
Jakob K, Satorhelyi P, Lange C, Wendisch VF, Silakowski B, Scherer S, Neuhaus K., J. Bacteriol. 189(15), 2007
PMID: 17526706
Transcriptional analysis of the acid tolerance response in Streptococcus pneumoniae.
Martin-Galiano AJ, Overweg K, Ferrandiz MJ, Reuter M, Wells JM, de la Campa AG., Microbiology (Reading, Engl.) 151(Pt 12), 2005
PMID: 16339938
Inhibition of Escherichia coli growth by acetic acid: a problem with methionine biosynthesis and homocysteine toxicity.
Roe AJ, O'Byrne C, McLaggan D, Booth IR., Microbiology (Reading, Engl.) 148(Pt 7), 2002
PMID: 12101308
Development of a Corynebacterium glutamicum DNA microarray and validation by genome-wide expression profiling during growth with propionate as carbon source.
Huser AT, Becker A, Brune I, Dondrup M, Kalinowski J, Plassmeier J, Puhler A, Wiegrabe I, Tauch A., J. Biotechnol. 106(2-3), 2003
PMID: 14651867
Towards the integrated analysis, visualization and reconstruction of microbial gene regulatory networks.
Baumbach J, Tauch A, Rahmann S., Brief. Bioinformatics 10(1), 2008
PMID: 19074493
The DtxR regulon of Corynebacterium glutamicum.
Wennerhold J, Bott M., J. Bacteriol. 188(8), 2006
PMID: 16585752
Submicromolar hydrogen peroxide disrupts the ability of Fur protein to control free-iron levels in Escherichia coli.
Varghese S, Wu A, Park S, Imlay KR, Imlay JA., Mol. Microbiol. 64(3), 2007
PMID: 17462026
The transcriptional regulator SsuR activates expression of the Corynebacterium glutamicum sulphonate utilization genes in the absence of sulphate.
Koch DJ, Ruckert C, Albersmeier A, Huser AT, Tauch A, Puhler A, Kalinowski J., Mol. Microbiol. 58(2), 2005
PMID: 16194234
Methionine uptake in Corynebacterium glutamicum by MetQNI and by MetPS, a novel methionine and alanine importer of the NSS neurotransmitter transporter family.
Trotschel C, Follmann M, Nettekoven JA, Mohrbach T, Forrest LR, Burkovski A, Marin K, Kramer R., Biochemistry 47(48), 2008
PMID: 18991398
Group 2 sigma factor SigB of Corynebacterium glutamicum positively regulates glucose metabolism under conditions of oxygen deprivation.
Ehira S, Shirai T, Teramoto H, Inui M, Yukawa H., Appl. Environ. Microbiol. 74(16), 2008
PMID: 18567683
Transcriptional regulation of NAD metabolism in bacteria: NrtR family of Nudix-related regulators.
Rodionov DA, De Ingeniis J, Mancini C, Cimadamore F, Zhang H, Osterman AL, Raffaelli N., Nucleic Acids Res. 36(6), 2008
PMID: 18276643
pH-regulated genes and survival at extreme pH
AUTHOR UNKNOWN, 1996
Pathways of oxidative damage.
Imlay JA., Annu. Rev. Microbiol. 57(), 2003
PMID: 14527285
Protein oxidation implicated as the primary determinant of bacterial radioresistance.
Daly MJ, Gaidamakova EK, Matrosova VY, Vasilenko A, Zhai M, Leapman RD, Lai B, Ravel B, Li SM, Kemner KM, Fredrickson JK., PLoS Biol. 5(4), 2007
PMID: 17373858
Are respiratory enzymes the primary sources of intracellular hydrogen peroxide?
Seaver LC, Imlay JA., J. Biol. Chem. 279(47), 2004
PMID: 15361522
Cellular defenses against superoxide and hydrogen peroxide.
Imlay JA., Annu. Rev. Biochem. 77(), 2008
PMID: 18173371
The global transcriptional response of Bacillus subtilis to peroxide stress is coordinated by three transcription factors.
Helmann JD, Wu MF, Gaballa A, Kobel PA, Morshedi MM, Fawcett P, Paddon C., J. Bacteriol. 185(1), 2003
PMID: 12486061
Quinolinate synthetase: the oxygen-sensitive site of de novo NAD(P)+ biosynthesis.
Gardner PR, Fridovich I., Arch. Biochem. Biophys. 284(1), 1991
PMID: 1846509
S-Adenosylmethionine.
Lu SC., Int. J. Biochem. Cell Biol. 32(4), 2000
PMID: 10762064
Production of L-threonin by analog-resistant mutants
AUTHOR UNKNOWN, 1972
Cystathionine beta-lyase from Escherichia coli.
Uren JR., Meth. Enzymol. 143(), 1987
PMID: 2821350
EMMA: a platform for consistent storage and efficient analysis of microarray data.
Dondrup M, Goesmann A, Bartels D, Kalinowski J, Krause L, Linke B, Rupp O, Sczyrba A, Puhler A, Meyer F., J. Biotechnol. 106(2-3), 2003
PMID: 14651856
A detergent- and cyanogen bromide-free method for integral membrane proteomics: application to Halobacterium purple membranes and the human epidermal membrane proteome.
Blonder J, Conrads TP, Yu LR, Terunuma A, Janini GM, Issaq HJ, Vogel JC, Veenstra TD., Proteomics 4(1), 2004
PMID: 14730670
Detecting differential and correlated protein expression in label-free shotgun proteomics.
Zhang B, VerBerkmoes NC, Langston MA, Uberbacher E, Hettich RL, Samatova NF., J. Proteome Res. 5(11), 2006
PMID: 17081042
Technical advance: simultaneous analysis of metabolites in potato tuber by gas chromatography-mass spectrometry.
Roessner U, Wagner C, Kopka J, Trethewey RN, Willmitzer L., Plant J. 23(1), 2000
PMID: 10929108
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 20025733
PubMed | Europe PMC

Suchen in

Google Scholar