Elements for a general memory structure: properties of recurrent neural networks used to form situation models
Makarov VA, Song Y, Velarde MG, Hübner D, Cruse H (2008)
Biological Cybernetics 98(5): 371-395.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Makarov, Valeri A.;
Song, Yongli;
Velarde, Manuel G.;
Hübner, David;
Cruse, HolkUniBi
Einrichtung
Abstract / Bemerkung
We study how individual memory items are stored assuming that situations given in the environment can be represented in the form of synaptic-like couplings in recurrent neural networks. Previous numerical investigations have shown that specific architectures based on suppression or max units can successfully learn static or dynamic stimuli (situations). Here we provide a theoretical basis concerning the learning process convergence and the network response to a novel stimulus. We show that, besides learning "simple" static situations, a nD network can learn and replicate a sequence of up to n different vectors or frames. We find limits on the learning rate and show coupling matrices developing during training in different cases including expansion of the network into the case of nonlinear interunit coupling. Furthermore, we show that a specific coupling matrix provides low-pass-filter properties to the units, thus connecting networks constructed by static summation units with continuous-time networks. We also show under which conditions such networks can be used to perform arithmetic calculations by means of pattern completion.
Stichworte
situation model;
recurrent neural network;
memory;
learning;
Animals;
Artificial Intelligence;
Computer Simulation;
Humans;
Models;
Neurological;
Neural Networks (Computer);
Nonlinear Dynamics;
Synapses
Erscheinungsjahr
2008
Zeitschriftentitel
Biological Cybernetics
Band
98
Ausgabe
5
Seite(n)
371-395
ISSN
0340-1200
eISSN
1432-0770
Page URI
https://pub.uni-bielefeld.de/record/1588457
Zitieren
Makarov VA, Song Y, Velarde MG, Hübner D, Cruse H. Elements for a general memory structure: properties of recurrent neural networks used to form situation models. Biological Cybernetics. 2008;98(5):371-395.
Makarov, V. A., Song, Y., Velarde, M. G., Hübner, D., & Cruse, H. (2008). Elements for a general memory structure: properties of recurrent neural networks used to form situation models. Biological Cybernetics, 98(5), 371-395. https://doi.org/10.1007/s00422-008-0221-5
Makarov, Valeri A., Song, Yongli, Velarde, Manuel G., Hübner, David, and Cruse, Holk. 2008. “Elements for a general memory structure: properties of recurrent neural networks used to form situation models”. Biological Cybernetics 98 (5): 371-395.
Makarov, V. A., Song, Y., Velarde, M. G., Hübner, D., and Cruse, H. (2008). Elements for a general memory structure: properties of recurrent neural networks used to form situation models. Biological Cybernetics 98, 371-395.
Makarov, V.A., et al., 2008. Elements for a general memory structure: properties of recurrent neural networks used to form situation models. Biological Cybernetics, 98(5), p 371-395.
V.A. Makarov, et al., “Elements for a general memory structure: properties of recurrent neural networks used to form situation models”, Biological Cybernetics, vol. 98, 2008, pp. 371-395.
Makarov, V.A., Song, Y., Velarde, M.G., Hübner, D., Cruse, H.: Elements for a general memory structure: properties of recurrent neural networks used to form situation models. Biological Cybernetics. 98, 371-395 (2008).
Makarov, Valeri A., Song, Yongli, Velarde, Manuel G., Hübner, David, and Cruse, Holk. “Elements for a general memory structure: properties of recurrent neural networks used to form situation models”. Biological Cybernetics 98.5 (2008): 371-395.
Daten bereitgestellt von European Bioinformatics Institute (EBI)
5 Zitationen in Europe PMC
Daten bereitgestellt von Europe PubMed Central.
Prediction-for-CompAction: navigation in social environments using generalized cognitive maps.
Villacorta-Atienza JA, Calvo C, Makarov VA., Biol Cybern 109(3), 2015
PMID: 25677525
Villacorta-Atienza JA, Calvo C, Makarov VA., Biol Cybern 109(3), 2015
PMID: 25677525
A hexapod walker using a heterarchical architecture for action selection.
Schilling M, Paskarbeit J, Hoinville T, Hüffmeier A, Schneider A, Schmitz J, Cruse H., Front Comput Neurosci 7(), 2013
PMID: 24062682
Schilling M, Paskarbeit J, Hoinville T, Hüffmeier A, Schneider A, Schmitz J, Cruse H., Front Comput Neurosci 7(), 2013
PMID: 24062682
Neural network architecture for cognitive navigation in dynamic environments.
Villacorta-Atienza JA, Makarov VA., IEEE Trans Neural Netw Learn Syst 24(12), 2013
PMID: 24805224
Villacorta-Atienza JA, Makarov VA., IEEE Trans Neural Netw Learn Syst 24(12), 2013
PMID: 24805224
No need for a cognitive map: decentralized memory for insect navigation.
Cruse H, Wehner R., PLoS Comput Biol 7(3), 2011
PMID: 21445233
Cruse H, Wehner R., PLoS Comput Biol 7(3), 2011
PMID: 21445233
Compact internal representation of dynamic situations: neural network implementing the causality principle.
Villacorta-Atienza JA, Velarde MG, Makarov VA., Biol Cybern 103(4), 2010
PMID: 20589508
Villacorta-Atienza JA, Velarde MG, Makarov VA., Biol Cybern 103(4), 2010
PMID: 20589508
18 References
Daten bereitgestellt von Europe PubMed Central.
Parameter space structure of continuous-time recurrent neural networks.
Beer RD., Neural Comput 18(12), 2006
PMID: 17052157
Beer RD., Neural Comput 18(12), 2006
PMID: 17052157
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
JL, Cogn Sci 14(), 1990
AUTHOR UNKNOWN, 0
JM, 1995
JJ, Proc Natl Acad Sci 79(), 1982
JJ, Proc Natl Acad Sci 81(), 1984
H, Science 2(), 2004
Modelling memory functions with recurrent neural networks consisting of input compensation units: I. Static situations.
Kuhn S, Beyn WJ, Cruse H., Biol Cybern 96(5), 2007
PMID: 17211628
Kuhn S, Beyn WJ, Cruse H., Biol Cybern 96(5), 2007
PMID: 17211628
Modelling memory functions with recurrent neural networks consisting of input compensation units: II. Dynamic situations.
Kuhn S, Cruse H., Biol Cybern 96(5), 2007
PMID: 17211627
Kuhn S, Cruse H., Biol Cybern 96(5), 2007
PMID: 17211627
T, Mech Mach Theory 37(), 2002
G, 1996
Complex dynamics and the structure of small neural networks.
Pasemann F., Network 13(2), 2002
PMID: 12061420
Pasemann F., Network 13(2), 2002
PMID: 12061420
U, Biol Cybern 79(), 1998
G, 2003
Learning to generate articulated behavior through the bottom-up and the top-down interaction processes.
Tani J., Neural Netw 16(1), 2003
PMID: 12576102
Tani J., Neural Netw 16(1), 2003
PMID: 12576102
Multimodal sensory integration in insects--towards insect brain control architectures.
Wessnitzer J, Webb B., Bioinspir Biomim 1(3), 2006
PMID: 17671308
Wessnitzer J, Webb B., Bioinspir Biomim 1(3), 2006
PMID: 17671308
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
PMID: 18350312
PubMed | Europe PMC
Suchen in