Model-free visualization of suspicious lesions in breast MRI based on supervised and unsupervised learning
Twellmann T, Meyer-Baese A, Lange O, Foo S, Nattkemper TW (2008)
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE 21(2): 129-140.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Twellmann, ThorstenUniBi;
Meyer-Baese, Anke;
Lange, Oliver;
Foo, Simon;
Nattkemper, Tim WilhelmUniBi
Einrichtung
Abstract / Bemerkung
Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) has become an important tool in breast cancer diagnosis, but evaluation of multitemporal 3D image data holds new challenges for human observers. To aid the image analysis process, we apply supervised and unsupervised pattern recognition techniques for computing enhanced visualizations of suspicious lesions in breast MRI data. These techniques represent art important component of future sophisticated computer-aided diagnosis (CAD) systems and support the visual exploration of spatial and temporal features of DCE-MRI data stemming from patients with confirmed lesion diagnosis. By taking into account the heterogeneity of cancerous tissue, these techniques reveal signals with malignant, benign and normal kinetics. They also provide a regional subclassification of pathological breast tissue, which is the basis for pseudo-color presentations of the image data. Intelligent medical systems Lire expected to have substantial implications in healthcare politics by contributing to the diagnosis of by contributing to the diagnosis of indeterminate breast lesions by non-invasive imaging. (c) 2007 Elsevier Ltd. All rights reserved.
Stichworte
magnetic;
computer-aided diagnosis;
clustering;
classification;
breast;
resonance imaging
Erscheinungsjahr
2008
Zeitschriftentitel
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE
Band
21
Ausgabe
2
Seite(n)
129-140
ISSN
0952-1976
Page URI
https://pub.uni-bielefeld.de/record/1588286
Zitieren
Twellmann T, Meyer-Baese A, Lange O, Foo S, Nattkemper TW. Model-free visualization of suspicious lesions in breast MRI based on supervised and unsupervised learning. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE. 2008;21(2):129-140.
Twellmann, T., Meyer-Baese, A., Lange, O., Foo, S., & Nattkemper, T. W. (2008). Model-free visualization of suspicious lesions in breast MRI based on supervised and unsupervised learning. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 21(2), 129-140. https://doi.org/10.1016/j.engappai.2007.04.005
Twellmann, Thorsten, Meyer-Baese, Anke, Lange, Oliver, Foo, Simon, and Nattkemper, Tim Wilhelm. 2008. “Model-free visualization of suspicious lesions in breast MRI based on supervised and unsupervised learning”. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE 21 (2): 129-140.
Twellmann, T., Meyer-Baese, A., Lange, O., Foo, S., and Nattkemper, T. W. (2008). Model-free visualization of suspicious lesions in breast MRI based on supervised and unsupervised learning. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE 21, 129-140.
Twellmann, T., et al., 2008. Model-free visualization of suspicious lesions in breast MRI based on supervised and unsupervised learning. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 21(2), p 129-140.
T. Twellmann, et al., “Model-free visualization of suspicious lesions in breast MRI based on supervised and unsupervised learning”, ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, vol. 21, 2008, pp. 129-140.
Twellmann, T., Meyer-Baese, A., Lange, O., Foo, S., Nattkemper, T.W.: Model-free visualization of suspicious lesions in breast MRI based on supervised and unsupervised learning. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE. 21, 129-140 (2008).
Twellmann, Thorsten, Meyer-Baese, Anke, Lange, Oliver, Foo, Simon, and Nattkemper, Tim Wilhelm. “Model-free visualization of suspicious lesions in breast MRI based on supervised and unsupervised learning”. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE 21.2 (2008): 129-140.
Daten bereitgestellt von European Bioinformatics Institute (EBI)
7 Zitationen in Europe PMC
Daten bereitgestellt von Europe PubMed Central.
Appearance Constrained Semi-Automatic Segmentation from DCE-MRI is Reproducible and Feasible for Breast Cancer Radiomics: A Feasibility Study.
Veeraraghavan H, Dashevsky BZ, Onishi N, Sadinski M, Morris E, Deasy JO, Sutton EJ., Sci Rep 8(1), 2018
PMID: 29556054
Veeraraghavan H, Dashevsky BZ, Onishi N, Sadinski M, Morris E, Deasy JO, Sutton EJ., Sci Rep 8(1), 2018
PMID: 29556054
Tensor based multichannel reconstruction for breast tumours identification from DCE-MRIs.
Yin XX, Hadjiloucas S, Chen JH, Zhang Y, Wu JL, Su MY., PLoS One 12(3), 2017
PMID: 28282379
Yin XX, Hadjiloucas S, Chen JH, Zhang Y, Wu JL, Su MY., PLoS One 12(3), 2017
PMID: 28282379
Pattern identification of biomedical images with time series: Contrasting THz pulse imaging with DCE-MRIs.
Yin XX, Hadjiloucas S, Zhang Y, Su MY, Miao Y, Abbott D., Artif Intell Med 67(), 2016
PMID: 26951630
Yin XX, Hadjiloucas S, Zhang Y, Su MY, Miao Y, Abbott D., Artif Intell Med 67(), 2016
PMID: 26951630
A vector machine formulation with application to the computer-aided diagnosis of breast cancer from DCE-MRI screening examinations.
Levman JE, Warner E, Causer P, Martel AL., J Digit Imaging 27(1), 2014
PMID: 23836079
Levman JE, Warner E, Causer P, Martel AL., J Digit Imaging 27(1), 2014
PMID: 23836079
Spectral embedding based active contour (SEAC) for lesion segmentation on breast dynamic contrast enhanced magnetic resonance imaging.
Agner SC, Xu J, Madabhushi A., Med Phys 40(3), 2013
PMID: 23464337
Agner SC, Xu J, Madabhushi A., Med Phys 40(3), 2013
PMID: 23464337
Comparative analysis of nonlinear dimensionality reduction techniques for breast MRI segmentation.
Akhbardeh A, Jacobs MA., Med Phys 39(4), 2012
PMID: 22482648
Akhbardeh A, Jacobs MA., Med Phys 39(4), 2012
PMID: 22482648
Textural kinetics: a novel dynamic contrast-enhanced (DCE)-MRI feature for breast lesion classification.
Agner SC, Soman S, Libfeld E, McDonald M, Thomas K, Englander S, Rosen MA, Chin D, Nosher J, Madabhushi A., J Digit Imaging 24(3), 2011
PMID: 20508965
Agner SC, Soman S, Libfeld E, McDonald M, Thomas K, Englander S, Rosen MA, Chin D, Nosher J, Madabhushi A., J Digit Imaging 24(3), 2011
PMID: 20508965
27 References
Daten bereitgestellt von Europe PubMed Central.
Feature extraction and classification of breast cancer on dynamic magnetic resonance imaging using artificial neural network.
Abdolmaleki P, Buadu LD, Naderimansh H., Cancer Lett. 171(2), 2001
PMID: 11520602
Abdolmaleki P, Buadu LD, Naderimansh H., Cancer Lett. 171(2), 2001
PMID: 11520602
A fuzzy c-means (FCM)-based approach for computerized segmentation of breast lesions in dynamic contrast-enhanced MR images.
Chen W, Giger ML, Bick U., Acad Radiol 13(1), 2006
PMID: 16399033
Chen W, Giger ML, Bick U., Acad Radiol 13(1), 2006
PMID: 16399033
Dynamic magnetic resonance imaging of tumor perfusion. Approaches and biomedical challenges.
Collins DJ, Padhani AR., IEEE Eng Med Biol Mag 23(5), 2004
PMID: 15565801
Collins DJ, Padhani AR., IEEE Eng Med Biol Mag 23(5), 2004
PMID: 15565801
Cristiani, 2000
Signal characteristics of malignant and benign lesions in dynamic 2D-MRI of the breast
Fischer, RoeFo 158(), 1993
Fischer, RoeFo 158(), 1993
MR imaging of the breast with Gd-DTPA: use and limitations.
Heywang SH, Wolf A, Pruss E, Hilbertz T, Eiermann W, Permanetter W., Radiology 171(1), 1989
PMID: 2648479
Heywang SH, Wolf A, Pruss E, Hilbertz T, Eiermann W, Permanetter W., Radiology 171(1), 1989
PMID: 2648479
Pharmacokinetic mapping of the breast: a new method for dynamic MR mammography.
Hoffmann U, Brix G, Knopp MV, Hess T, Lorenz WJ., Magn Reson Med 33(4), 1995
PMID: 7776881
Hoffmann U, Brix G, Knopp MV, Hess T, Lorenz WJ., Magn Reson Med 33(4), 1995
PMID: 7776881
Clinical testing of high-spatial-resolution parametric contrast-enhanced MR imaging of the breast.
Kelcz F, Furman-Haran E, Grobgeld D, Degani H., AJR Am J Roentgenol 179(6), 2002
PMID: 12438042
Kelcz F, Furman-Haran E, Grobgeld D, Degani H., AJR Am J Roentgenol 179(6), 2002
PMID: 12438042
Dynamic breast MR imaging: are signal intensity time course data useful for differential diagnosis of enhancing lesions?
Kuhl CK, Mielcareck P, Klaschik S, Leutner C, Wardelmann E, Gieseke J, Schild HH., Radiology 211(1), 1999
PMID: 10189459
Kuhl CK, Mielcareck P, Klaschik S, Leutner C, Wardelmann E, Gieseke J, Schild HH., Radiology 211(1), 1999
PMID: 10189459
Classification of signal-time curves from dynamic MR mammography by neural networks.
Lucht RE, Knopp MV, Brix G., Magn Reson Imaging 19(1), 2001
PMID: 11295347
Lucht RE, Knopp MV, Brix G., Magn Reson Imaging 19(1), 2001
PMID: 11295347
Neural network-based segmentation of dynamic (MR) mammography images
Lucht, Magnetic Resonance Imaging 20(8), 2002
Lucht, Magnetic Resonance Imaging 20(8), 2002
Meyer-Bäse, 2003
AUTHOR UNKNOWN, 0
MR imaging of the breast for the detection, diagnosis, and staging of breast cancer.
Orel SG, Schnall MD., Radiology 220(1), 2001
PMID: 11425968
Orel SG, Schnall MD., Radiology 220(1), 2001
PMID: 11425968
Vector quantization by deterministic annealing
Rose, IEEE Transactions on Information Theory 38(3), 1992
Rose, IEEE Transactions on Information Theory 38(3), 1992
Interactive detection and visualization of breast lesions from dynamic contrast enhanced MRI volumes.
Subramanian KR, Brockway JP, Carruthers WB., Comput Med Imaging Graph 28(8), 2004
PMID: 15541950
Subramanian KR, Brockway JP, Carruthers WB., Comput Med Imaging Graph 28(8), 2004
PMID: 15541950
Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols.
Tofts PS, Brix G, Buckley DL, Evelhoch JL, Henderson E, Knopp MV, Larsson HB, Lee TY, Mayr NA, Parker GJ, Port RE, Taylor J, Weisskoff RM., J Magn Reson Imaging 10(3), 1999
PMID: 10508281
Tofts PS, Brix G, Buckley DL, Evelhoch JL, Henderson E, Knopp MV, Larsson HB, Lee TY, Mayr NA, Parker GJ, Port RE, Taylor J, Weisskoff RM., J Magn Reson Imaging 10(3), 1999
PMID: 10508281
Feature extraction and classification of dynamic contrast-enhanced T2*-weighted breast image data.
Torheim G, Godtliebsen F, Axelson D, Kvistad KA, Haraldseth O, Rinck PA., IEEE Trans Med Imaging 20(12), 2001
PMID: 11811829
Torheim G, Godtliebsen F, Axelson D, Kvistad KA, Haraldseth O, Rinck PA., IEEE Trans Med Imaging 20(12), 2001
PMID: 11811829
Image fusion for dynamic contrast-enhanced magnetic resonance imaging
Twellmann, BMC BioMedical Engineering OnLine 3(35), 2004
Twellmann, BMC BioMedical Engineering OnLine 3(35), 2004
AUTHOR UNKNOWN, 0
An adaptive tissue characterization network for model-free visualization of dynamic contrast-enhanced magnetic resonance image data.
Twellmann T, Lichte O, Nattkemper TW., IEEE Trans Med Imaging 24(10), 2005
PMID: 16229413
Twellmann T, Lichte O, Nattkemper TW., IEEE Trans Med Imaging 24(10), 2005
PMID: 16229413
Vapnik, 1995
Breast fibroadenoma: mapping of pathophysiologic features with three-time-point, contrast-enhanced MR imaging--pilot study.
Weinstein D, Strano S, Cohen P, Fields S, Gomori JM, Degani H., Radiology 210(1), 1999
PMID: 9885614
Weinstein D, Strano S, Cohen P, Fields S, Gomori JM, Degani H., Radiology 210(1), 1999
PMID: 9885614
Cluster analysis of biomedical image time-series
Wismüller, International Journal on Computer Vision 46(2), 2002
Wismüller, International Journal on Computer Vision 46(2), 2002
Segmentation and classification of dynamic breast magnetic resonance image data
Wismüller, Journal of Electronic Imaging 15(1), 2006
Wismüller, Journal of Electronic Imaging 15(1), 2006
Independent component analysis for the examination of dynamic contrast-enhanced breast magnetic resonance imaging data: preliminary study.
Yoo SS, Gil Choi B, Han JY, Hee Kim H., Invest Radiol 37(12), 2002
PMID: 12446997
Yoo SS, Gil Choi B, Han JY, Hee Kim H., Invest Radiol 37(12), 2002
PMID: 12446997
Magnetic resonance imaging of the breast
Yousef, Radiology 150(2), 1984
Yousef, Radiology 150(2), 1984
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
PMID: 19255616
PubMed | Europe PMC
Suchen in