Thermodynamics of the dimer-decamer transition of reduced human and plant 2-Cys peroxiredoxin

Barranco-Medina S, Kakorin S, Lazaro JJ, Dietz K-J (2008)
BIOCHEMISTRY 47(27): 7196-7204.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Barranco-Medina, Sergio; Kakorin, SergejUniBi; Lazaro, Juan Jose; Dietz, Karl-JosefUniBi
Abstract / Bemerkung
Isothermal titration calorimetry (ITC) is a powerful technique for investigating self-association processes of protein complexes and was expected to reveal quantitative data on., peroxiredoxin oligomerization by directly measuring the thermodynamic parameters of dimer-dimer interaction. Recombinant classical 2-cysteine peroxoredoxins from Homo sapiens, Arabidopsis thaliana, and Pisum sativum as well as a carboxy-terminally truncated variant were subjected to ITC analysis by stepwise injection into the reaction vessel under various redox conditions. The direct measurement of the decamer-dimer equilibrium of reduced peroxiredoxin revealed a critical concentration in the very low micromolar range. The data suggest a cooperative assembly above this critical transition concentration where a nucleus facilitates assembly. The rather abrupt transition indicates that assembly processes do not occur below the critical transition concentration while oligomerization is efficiently triggered above it. The magnitude of the measured enthalpy confirmed the endothermic nature of the peroxiredoxin oligomerization. Heterocomplexes between peroxiredoxin polypeptides from different species were not formed. We conclude that a functional constraint conserved the dimer-decamer transition with highly similar critical transition concentrations despite emerging sequence variation during evolution.
Erscheinungsjahr
2008
Zeitschriftentitel
BIOCHEMISTRY
Band
47
Ausgabe
27
Seite(n)
7196-7204
ISSN
0006-2960
eISSN
1520-4995
Page URI
https://pub.uni-bielefeld.de/record/1587311

Zitieren

Barranco-Medina S, Kakorin S, Lazaro JJ, Dietz K-J. Thermodynamics of the dimer-decamer transition of reduced human and plant 2-Cys peroxiredoxin. BIOCHEMISTRY. 2008;47(27):7196-7204.
Barranco-Medina, S., Kakorin, S., Lazaro, J. J., & Dietz, K. - J. (2008). Thermodynamics of the dimer-decamer transition of reduced human and plant 2-Cys peroxiredoxin. BIOCHEMISTRY, 47(27), 7196-7204. https://doi.org/10.1021/bi8002956
Barranco-Medina, Sergio, Kakorin, Sergej, Lazaro, Juan Jose, and Dietz, Karl-Josef. 2008. “Thermodynamics of the dimer-decamer transition of reduced human and plant 2-Cys peroxiredoxin”. BIOCHEMISTRY 47 (27): 7196-7204.
Barranco-Medina, S., Kakorin, S., Lazaro, J. J., and Dietz, K. - J. (2008). Thermodynamics of the dimer-decamer transition of reduced human and plant 2-Cys peroxiredoxin. BIOCHEMISTRY 47, 7196-7204.
Barranco-Medina, S., et al., 2008. Thermodynamics of the dimer-decamer transition of reduced human and plant 2-Cys peroxiredoxin. BIOCHEMISTRY, 47(27), p 7196-7204.
S. Barranco-Medina, et al., “Thermodynamics of the dimer-decamer transition of reduced human and plant 2-Cys peroxiredoxin”, BIOCHEMISTRY, vol. 47, 2008, pp. 7196-7204.
Barranco-Medina, S., Kakorin, S., Lazaro, J.J., Dietz, K.-J.: Thermodynamics of the dimer-decamer transition of reduced human and plant 2-Cys peroxiredoxin. BIOCHEMISTRY. 47, 7196-7204 (2008).
Barranco-Medina, Sergio, Kakorin, Sergej, Lazaro, Juan Jose, and Dietz, Karl-Josef. “Thermodynamics of the dimer-decamer transition of reduced human and plant 2-Cys peroxiredoxin”. BIOCHEMISTRY 47.27 (2008): 7196-7204.

34 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

TREM-1 multimerization is essential for its activation on monocytes and neutrophils.
Carrasco K, Boufenzer A, Jolly L, Le Cordier H, Wang G, Heck AJ, Cerwenka A, Vinolo E, Nazabal A, Kriznik A, Launay P, Gibot S, Derive M., Cell Mol Immunol 16(5), 2019
PMID: 29568119
Mitochondria Are Important Determinants of the Aging of Seeds.
Ratajczak E, Małecka A, Ciereszko I, Staszak AM., Int J Mol Sci 20(7), 2019
PMID: 30925807
Experimentally Dissecting the Origins of Peroxiredoxin Catalysis.
Nelson KJ, Perkins A, Van Swearingen AED, Hartman S, Brereton AE, Parsonage D, Salsbury FR, Karplus PA, Poole LB., Antioxid Redox Signal 28(7), 2018
PMID: 28375740
Hyperoxidation of Peroxiredoxins: Gain or Loss of Function?
Veal EA, Underwood ZE, Tomalin LE, Morgan BA, Pillay CS., Antioxid Redox Signal 28(7), 2018
PMID: 28762774
Graded Response of the Multifunctional 2-Cysteine Peroxiredoxin, CgPrx, to Increasing Levels of Hydrogen Peroxide in Corynebacterium glutamicum.
Si M, Wang T, Pan J, Lin J, Chen C, Wei Y, Lu Z, Wei G, Shen X., Antioxid Redox Signal 26(1), 2017
PMID: 27324811
The role of peroxiredoxin 1 in redox sensing and transducing.
Ledgerwood EC, Marshall JW, Weijman JF., Arch Biochem Biophys 617(), 2017
PMID: 27756681
Calcium and magnesium ions modulate the oligomeric state and function of mitochondrial 2-Cys peroxiredoxins in Leishmania parasites.
Morais MAB, Giuseppe PO, Souza TACB, Castro H, Honorato RV, Oliveira PSL, Netto LES, Tomas AM, Murakami MT., J Biol Chem 292(17), 2017
PMID: 28292930
Quantitative analysis of the impact of a human pathogenic mutation on the CCT5 chaperonin subunit using a proxy archaeal ortholog.
Spigolon D, Gallagher DT, Velazquez-Campoy A, Bulone D, Narang J, San Biagio PL, Cappello F, Macario AJL, Conway de Macario E, Robb FT., Biochem Biophys Rep 12(), 2017
PMID: 29552646
Alteration of molecular assembly of peroxiredoxins from hyperthermophilic archaea.
Nakamura T, Oshima M, Yasuda M, Shimamura A, Morita J, Uegaki K., J Biochem 162(6), 2017
PMID: 28992240
Kinetic analysis of structural influences on the susceptibility of peroxiredoxins 2 and 3 to hyperoxidation.
Poynton RA, Peskin AV, Haynes AC, Lowther WT, Hampton MB, Winterbourn CC., Biochem J 473(4), 2016
PMID: 26614766
Distribution and Features of the Six Classes of Peroxiredoxins.
Poole LB, Nelson KJ., Mol Cells 39(1), 2016
PMID: 26810075
A primer on peroxiredoxin biochemistry.
Karplus PA., Free Radic Biol Med 80(), 2015
PMID: 25452140
Mitochondrial peroxiredoxin functions as crucial chaperone reservoir in Leishmania infantum.
Teixeira F, Castro H, Cruz T, Tse E, Koldewey P, Southworth DR, Tomás AM, Jakob U., Proc Natl Acad Sci U S A 112(7), 2015
PMID: 25646478
Functional and structural changes in plant mitochondrial PrxII F caused by NO.
Camejo D, Ortiz-Espín A, Lázaro JJ, Romero-Puertas MC, Lázaro-Payo A, Sevilla F, Jiménez A., J Proteomics 119(), 2015
PMID: 25682994
In vivo parameters influencing 2-Cys Prx oligomerization: The role of enzyme sulfinylation.
Noichri Y, Palais G, Ruby V, D'Autreaux B, Delaunay-Moisan A, Nyström T, Molin M, Toledano MB., Redox Biol 6(), 2015
PMID: 26335398
Hydrogen peroxide metabolism and sensing in human erythrocytes: a validated kinetic model and reappraisal of the role of peroxiredoxin II.
Benfeitas R, Selvaggio G, Antunes F, Coelho PM, Salvador A., Free Radic Biol Med 74(), 2014
PMID: 24952139
Molecular recognition in the interaction of chloroplast 2-Cys peroxiredoxin with NADPH-thioredoxin reductase C (NTRC) and thioredoxin x.
Bernal-Bayard P, Ojeda V, Hervás M, Cejudo FJ, Navarro JA, Velázquez-Campoy A, Pérez-Ruiz JM., FEBS Lett 588(23), 2014
PMID: 25448674
The conformational bases for the two functionalities of 2-cysteine peroxiredoxins as peroxidase and chaperone.
König J, Galliardt H, Jütte P, Schäper S, Dittmann L, Dietz KJ., J Exp Bot 64(11), 2013
PMID: 23828546
Moonlighting by different stressors: crystal structure of the chaperone species of a 2-Cys peroxiredoxin.
Saccoccia F, Di Micco P, Boumis G, Brunori M, Koutris I, Miele AE, Morea V, Sriratana P, Williams DL, Bellelli A, Angelucci F., Structure 20(3), 2012
PMID: 22405002
The dual-targeted plant sulfiredoxin retroreduces the sulfinic form of atypical mitochondrial peroxiredoxin.
Iglesias-Baena I, Barranco-Medina S, Sevilla F, Lázaro JJ., Plant Physiol 155(2), 2011
PMID: 21139087
Peroxiredoxins in plants and cyanobacteria.
Dietz KJ., Antioxid Redox Signal 15(4), 2011
PMID: 21194355
Mitochondrial peroxiredoxin involvement in antioxidant defence and redox signalling.
Cox AG, Winterbourn CC, Hampton MB., Biochem J 425(2), 2010
PMID: 20025614
Characterization of plant sulfiredoxin and role of sulphinic form of 2-Cys peroxiredoxin.
Iglesias-Baena I, Barranco-Medina S, Lázaro-Payo A, López-Jaramillo FJ, Sevilla F, Lázaro JJ., J Exp Bot 61(5), 2010
PMID: 20176891
Survey of the year 2008: applications of isothermal titration calorimetry.
Falconer RJ, Penkova A, Jelesarov I, Collins BM., J Mol Recognit 23(5), 2010
PMID: 20213668
Hubs and bottlenecks in plant molecular signalling networks.
Dietz KJ, Jacquot JP, Harris G., New Phytol 188(4), 2010
PMID: 20958306
Typical 2-Cys peroxiredoxins--structures, mechanisms and functions.
Hall A, Karplus PA, Poole LB., FEBS J 276(9), 2009
PMID: 19476488
Typical 2-Cys peroxiredoxins--modulation by covalent transformations and noncovalent interactions.
Aran M, Ferrero DS, Pagano E, Wolosiuk RA., FEBS J 276(9), 2009
PMID: 19476489
The oligomeric conformation of peroxiredoxins links redox state to function.
Barranco-Medina S, Lázaro JJ, Dietz KJ., FEBS Lett 583(12), 2009
PMID: 19464293
Multiple redox and non-redox interactions define 2-Cys peroxiredoxin as a regulatory hub in the chloroplast.
Muthuramalingam M, Seidel T, Laxa M, Nunes de Miranda SM, Gärtner F, Ströher E, Kandlbinder A, Dietz KJ., Mol Plant 2(6), 2009
PMID: 19995730
Hexameric oligomerization of mitochondrial peroxiredoxin PrxIIF and formation of an ultrahigh affinity complex with its electron donor thioredoxin Trx-o.
Barranco-Medina S, Krell T, Bernier-Villamor L, Sevilla F, Lázaro JJ, Dietz KJ., J Exp Bot 59(12), 2008
PMID: 18632730

References

Daten bereitgestellt von Europe PubMed Central.

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 18553980
PubMed | Europe PMC

Suchen in

Google Scholar