NADPH-dependent thioredoxin reductase and 2-Cys peroxiredoxins are needed for the protection of Mg-protoporphyrin monomethyl ester cyclase

Stenbaek A, Hansson A, Wulff RP, Hansson M, Dietz K-J, Jensen PE (2008)
FEBS LETTERS 582(18): 2773-2778.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Stenbaek, Anne; Hansson, Andreas; Wulff, Ragna Peterson; Hansson, Mats; Dietz, Karl-JosefUniBi; Jensen, Poul Erik
Abstract / Bemerkung
The chloroplast-localized NADPH-dependent thioredoxin reductase ( NTRC) has been found to be able to reduce hydrogen peroxide scavenging 2-Cys peroxiredoxins. We show that the Arabidopsis ntrc mutant is perturbed in chlorophyll biosynthesis and accumulate intermediates preceding protochlorophyllide formation. A specific involvement of NTRC during biosynthesis of protochlorophyllide is indicated from in vitro aerobic cyclase assays in which the conversion of Mg-protoporhyrin monomethyl ester into protochlorophyllide is stimulated by addition of the NTRC/2-Cys peroxiredoxin system. These findings support the hypothesis that this NADPH-dependent hydrogen peroxide scavenging system is particularly important during periods with limited reducing power from photosynthesis, e. g. under chloroplast biogenesis. (c) 2008 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Stichworte
chloroplast biogenesis; gene; co-expression; hydrogen peroxide scavenging; Arabidopsis thaliana; aerobic cyclase; biosynthetic pathway
Erscheinungsjahr
2008
Zeitschriftentitel
FEBS LETTERS
Band
582
Ausgabe
18
Seite(n)
2773-2778
ISSN
0014-5793
Page URI
https://pub.uni-bielefeld.de/record/1586893

Zitieren

Stenbaek A, Hansson A, Wulff RP, Hansson M, Dietz K-J, Jensen PE. NADPH-dependent thioredoxin reductase and 2-Cys peroxiredoxins are needed for the protection of Mg-protoporphyrin monomethyl ester cyclase. FEBS LETTERS. 2008;582(18):2773-2778.
Stenbaek, A., Hansson, A., Wulff, R. P., Hansson, M., Dietz, K. - J., & Jensen, P. E. (2008). NADPH-dependent thioredoxin reductase and 2-Cys peroxiredoxins are needed for the protection of Mg-protoporphyrin monomethyl ester cyclase. FEBS LETTERS, 582(18), 2773-2778. https://doi.org/10.1016/j.febslet.2008.07.006
Stenbaek, Anne, Hansson, Andreas, Wulff, Ragna Peterson, Hansson, Mats, Dietz, Karl-Josef, and Jensen, Poul Erik. 2008. “NADPH-dependent thioredoxin reductase and 2-Cys peroxiredoxins are needed for the protection of Mg-protoporphyrin monomethyl ester cyclase”. FEBS LETTERS 582 (18): 2773-2778.
Stenbaek, A., Hansson, A., Wulff, R. P., Hansson, M., Dietz, K. - J., and Jensen, P. E. (2008). NADPH-dependent thioredoxin reductase and 2-Cys peroxiredoxins are needed for the protection of Mg-protoporphyrin monomethyl ester cyclase. FEBS LETTERS 582, 2773-2778.
Stenbaek, A., et al., 2008. NADPH-dependent thioredoxin reductase and 2-Cys peroxiredoxins are needed for the protection of Mg-protoporphyrin monomethyl ester cyclase. FEBS LETTERS, 582(18), p 2773-2778.
A. Stenbaek, et al., “NADPH-dependent thioredoxin reductase and 2-Cys peroxiredoxins are needed for the protection of Mg-protoporphyrin monomethyl ester cyclase”, FEBS LETTERS, vol. 582, 2008, pp. 2773-2778.
Stenbaek, A., Hansson, A., Wulff, R.P., Hansson, M., Dietz, K.-J., Jensen, P.E.: NADPH-dependent thioredoxin reductase and 2-Cys peroxiredoxins are needed for the protection of Mg-protoporphyrin monomethyl ester cyclase. FEBS LETTERS. 582, 2773-2778 (2008).
Stenbaek, Anne, Hansson, Andreas, Wulff, Ragna Peterson, Hansson, Mats, Dietz, Karl-Josef, and Jensen, Poul Erik. “NADPH-dependent thioredoxin reductase and 2-Cys peroxiredoxins are needed for the protection of Mg-protoporphyrin monomethyl ester cyclase”. FEBS LETTERS 582.18 (2008): 2773-2778.

53 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Chloroplast Redox Regulatory Mechanisms in Plant Adaptation to Light and Darkness.
Cejudo FJ, Ojeda V, Delgado-Requerey V, González M, Pérez-Ruiz JM., Front Plant Sci 10(), 2019
PMID: 31019520
Chloroplast thioredoxin systems dynamically regulate photosynthesis in plants.
Nikkanen L, Rintamäki E., Biochem J 476(7), 2019
PMID: 30988137
Potential roles of YCF54 and ferredoxin-NADPH reductase for magnesium protoporphyrin monomethylester cyclase.
Herbst J, Girke A, Hajirezaei MR, Hanke G, Grimm B., Plant J 94(3), 2018
PMID: 29443418
The role of retrograde signals during plant stress responses.
Crawford T, Lehotai N, Strand Å., J Exp Bot 69(11), 2018
PMID: 29281071
Towards Initial Indications for a Thiol-Based Redox Control of Arabidopsis 5-Aminolevulinic Acid Dehydratase.
Wittmann D, Kløve S, Wang P, Grimm B., Antioxidants (Basel) 7(11), 2018
PMID: 30384439
The iron-sulfur cluster biosynthesis protein SUFB is required for chlorophyll synthesis, but not phytochrome signaling.
Hu X, Page MT, Sumida A, Tanaka A, Terry MJ, Tanaka R., Plant J 89(6), 2017
PMID: 28004871
Circadian and Plastid Signaling Pathways Are Integrated to Ensure Correct Expression of the CBF and COR Genes during Photoperiodic Growth.
Norén L, Kindgren P, Stachula P, Rühl M, Eriksson ME, Hurry V, Strand Å., Plant Physiol 171(2), 2016
PMID: 27208227
Characterization of the Arabidopsis thaliana 2-Cys peroxiredoxin interactome.
Cerveau D, Kraut A, Stotz HU, Mueller MJ, Couté Y, Rey P., Plant Sci 252(), 2016
PMID: 27717466
The catalytic subunit of magnesium-protoporphyrin IX monomethyl ester cyclase forms a chloroplast complex to regulate chlorophyll biosynthesis in rice.
Kong W, Yu X, Chen H, Liu L, Xiao Y, Wang Y, Wang C, Lin Y, Yu Y, Wang C, Jiang L, Zhai H, Zhao Z, Wan J., Plant Mol Biol 92(1-2), 2016
PMID: 27514852
GUN1, a Jack-Of-All-Trades in Chloroplast Protein Homeostasis and Signaling.
Colombo M, Tadini L, Peracchio C, Ferrari R, Pesaresi P., Front Plant Sci 7(), 2016
PMID: 27713755
A novel thiol-reductase activity of Arabidopsis YUC6 confers drought tolerance independently of auxin biosynthesis.
Cha JY, Kim WY, Kang SB, Kim JI, Baek D, Jung IJ, Kim MR, Li N, Kim HJ, Nakajima M, Asami T, Sabir JS, Park HC, Lee SY, Bohnert HJ, Bressan RA, Pardo JM, Yun DJ., Nat Commun 6(), 2015
PMID: 26314500
Plastid signals and the bundle sheath: mesophyll development in reticulate mutants.
Lundquist PK, Rosar C, Bräutigam A, Weber AP., Mol Plant 7(1), 2014
PMID: 24046062
The metabolism of methylsulfinylalkyl- and methylthioalkyl-glucosinolates by a selection of human gut bacteria.
Luang-In V, Narbad A, Nueno-Palop C, Mithen R, Bennett M, Rossiter JT., Mol Nutr Food Res 58(4), 2014
PMID: 24170324
Meta-analysis of retrograde signaling in Arabidopsis thaliana reveals a core module of genes embedded in complex cellular signaling networks.
Gläßer C, Haberer G, Finkemeier I, Pfannschmidt T, Kleine T, Leister D, Dietz KJ, Häusler RE, Grimm B, Mayer KF., Mol Plant 7(7), 2014
PMID: 24719466
Metabolic control of redox and redox control of metabolism in plants.
Geigenberger P, Fernie AR., Antioxid Redox Signal 21(9), 2014
PMID: 24960279
Plastid-to-nucleus communication, signals controlling the running of the plant cell.
Barajas-López Jde D, Blanco NE, Strand Å., Biochim Biophys Acta 1833(2), 2013
PMID: 22749883
PAPP5 is involved in the tetrapyrrole mediated plastid signalling during chloroplast development.
Barajas-López Jde D, Kremnev D, Shaikhali J, Piñas-Fernández A, Strand A., PLoS One 8(3), 2013
PMID: 23555952
Posttranslational influence of NADPH-dependent thioredoxin reductase C on enzymes in tetrapyrrole synthesis.
Richter AS, Peter E, Rothbart M, Schlicke H, Toivola J, Rintamäki E, Grimm B., Plant Physiol 162(1), 2013
PMID: 23569108
Overexpression of chloroplast NADPH-dependent thioredoxin reductase in Arabidopsis enhances leaf growth and elucidates in vivo function of reductase and thioredoxin domains.
Toivola J, Nikkanen L, Dahlström KM, Salminen TA, Lepistö A, Vignols HF, Rintamäki E., Front Plant Sci 4(), 2013
PMID: 24115951
Interplay between Heat Shock Protein 90 and HY5 controls PhANG expression in response to the GUN5 plastid signal.
Kindgren P, Norén L, López Jde D, Shaikhali J, Strand A., Mol Plant 5(4), 2012
PMID: 22201048
The function of the NADPH thioredoxin reductase C-2-Cys peroxiredoxin system in plastid redox regulation and signalling.
Cejudo FJ, Ferrández J, Cano B, Puerto-Galán L, Guinea M., FEBS Lett 586(18), 2012
PMID: 22796111
Electron transfer pathways and dynamics of chloroplast NADPH-dependent thioredoxin reductase C (NTRC).
Bernal-Bayard P, Hervás M, Cejudo FJ, Navarro JA., J Biol Chem 287(40), 2012
PMID: 22833674
LCAA, a novel factor required for magnesium protoporphyrin monomethylester cyclase accumulation and feedback control of aminolevulinic acid biosynthesis in tobacco.
Albus CA, Salinas A, Czarnecki O, Kahlau S, Rothbart M, Thiele W, Lein W, Bock R, Grimm B, Schöttler MA., Plant Physiol 160(4), 2012
PMID: 23085838
Retrograde signaling from functionally heterogeneous plastids.
Lepistö A, Toivola J, Nikkanen L, Rintamäki E., Front Plant Sci 3(), 2012
PMID: 23267363
A novel proteomic approach reveals a role for Mg-protoporphyrin IX in response to oxidative stress.
Kindgren P, Eriksson MJ, Benedict C, Mohapatra A, Gough SP, Hansson M, Kieselbach T, Strand A., Physiol Plant 141(4), 2011
PMID: 21158868
A comparative analysis of the NADPH thioredoxin reductase C-2-Cys peroxiredoxin system from plants and cyanobacteria.
Pascual MB, Mata-Cabana A, Florencio FJ, Lindahl M, Cejudo FJ., Plant Physiol 155(4), 2011
PMID: 21335525
A novel proteomic approach reveals a role for Mg-protoporphyrin IX in response to oxidative stress
Kindgren P, Eriksson MJ, Benedict C, Mohapatra A, Gough SP, Hansson M, Kieselbach T, Strand Å., Physiol Plant 141(4), 2011
PMID: IND44505597
GUN4-porphyrin complexes bind the ChlH/GUN5 subunit of Mg-Chelatase and promote chlorophyll biosynthesis in Arabidopsis.
Adhikari ND, Froehlich JE, Strand DD, Buck SM, Kramer DM, Larkin RM., Plant Cell 23(4), 2011
PMID: 21467578
Peroxiredoxins in plants and cyanobacteria.
Dietz KJ., Antioxid Redox Signal 15(4), 2011
PMID: 21194355
Mg protoporphyrin monomethylester cyclase deficiency and effects on tetrapyrrole metabolism in different light conditions.
Peter E, Rothbart M, Oelze ML, Shalygo N, Dietz KJ, Grimm B., Plant Cell Physiol 51(7), 2010
PMID: 20460500
Functional analysis of the pathways for 2-Cys peroxiredoxin reduction in Arabidopsis thaliana chloroplasts.
Pulido P, Spínola MC, Kirchsteiger K, Guinea M, Pascual MB, Sahrawy M, Sandalio LM, Dietz KJ, González M, Cejudo FJ., J Exp Bot 61(14), 2010
PMID: 20616155
Chloroplast NADPH-thioredoxin reductase interacts with photoperiodic development in Arabidopsis.
Lepistö A, Kangasjärvi S, Luomala EM, Brader G, Sipari N, Keränen M, Keinänen M, Rintamäki E., Plant Physiol 149(3), 2009
PMID: 19151130
Typical 2-Cys peroxiredoxins--modulation by covalent transformations and noncovalent interactions.
Aran M, Ferrero DS, Pagano E, Wolosiuk RA., FEBS J 276(9), 2009
PMID: 19476489
NTRC links built-in thioredoxin to light and sucrose in regulating starch synthesis in chloroplasts and amyloplasts.
Michalska J, Zauber H, Buchanan BB, Cejudo FJ, Geigenberger P., Proc Natl Acad Sci U S A 106(24), 2009
PMID: 19470473
Implication of chlorophyll biosynthesis on chloroplast-to-nucleus retrograde signaling.
Rintamäki E, Lepistö A, Kangasjärvi S., Plant Signal Behav 4(6), 2009
PMID: 19816147

33 References

Daten bereitgestellt von Europe PubMed Central.

Oxidative modifications to cellular components in plants
Møller, Annu. Rev. Plant Biol. 58(), 2007
Chloroplast to nucleus communication triggered by accumulation of Mg-protoporphyrinIX.
Strand A, Asami T, Alonso J, Ecker JR, Chory J., Nature 421(6918), 2003
PMID: 12511958
The C-type Arabidopsis thioredoxin reductase ANTR-C acts as an electron donor to 2-Cys peroxiredoxins in chloroplasts.
Moon JC, Jang HH, Chae HB, Lee JR, Lee SY, Jung YJ, Shin MR, Lim HS, Chung WS, Yun DJ, Lee KO, Lee SY., Biochem. Biophys. Res. Commun. 348(2), 2006
PMID: 16884685
Rice NTRC is a high-efficiency redox system for chloroplast protection against oxidative damage.
Perez-Ruiz JM, Spinola MC, Kirchsteiger K, Moreno J, Sahrawy M, Cejudo FJ., Plant Cell 18(9), 2006
PMID: 16891402
Plant peroxiredoxins.
Dietz KJ., Annu Rev Plant Biol 54(), 2003
PMID: 14502986
Analysis of the proteins targeted by CDSP32, a plastidic thioredoxin participating in oxidative stress responses.
Rey P, Cuine S, Eymery F, Garin J, Court M, Jacquot JP, Rouhier N, Broin M., Plant J. 41(1), 2005
PMID: 15610347
The Arabidopsis plastidial thioredoxins: new functions and new insights into specificity.
Collin V, Issakidis-Bourguet E, Marchand C, Hirasawa M, Lancelin JM, Knaff DB, Miginiac-Maslow M., J. Biol. Chem. 278(26), 2003
PMID: 12707279
The function of peroxiredoxins in plant organelle redox metabolism.
Dietz KJ, Jacob S, Oelze ML, Laxa M, Tognetti V, de Miranda SM, Baier M, Finkemeier I., J. Exp. Bot. 57(8), 2006
PMID: 16606633
NTRC new ways of using NADPH in the chloroplast
Spı´nola, Physiol. Plant 133(), 2008
CSB.DB: a comprehensive systems-biology database.
Steinhauser D, Usadel B, Luedemann A, Thimm O, Kopka J., Bioinformatics 20(18), 2004
PMID: 15247097
Genome-wide insertional mutagenesis of Arabidopsis thaliana.
Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H, Shinn P, Stevenson DK, Zimmerman J, Barajas P, Cheuk R, Gadrinab C, Heller C, Jeske A, Koesema E, Meyers CC, Parker H, Prednis L, Ansari Y, Choy N, Deen H, Geralt M, Hazari N, Hom E, Karnes M, Mulholland C, Ndubaku R, Schmidt I, Guzman P, Aguilar-Henonin L, Schmid M, Weigel D, Carter DE, Marchand T, Risseeuw E, Brogden D, Zeko A, Crosby WL, Berry CC, Ecker JR., Science 301(5633), 2003
PMID: 12893945
An Arabidopsis thaliana T-DNA mutagenized population (GABI-Kat) for flanking sequence tag-based reverse genetics.
Rosso MG, Li Y, Strizhov N, Reiss B, Dekker K, Weisshaar B., Plant Mol. Biol. 53(1-2), 2003
PMID: 14756321
Arabidopsis CHL27, located in both envelope and thylakoid membranes, is required for the synthesis of protochlorophyllide.
Tottey S, Block MA, Allen M, Westergren T, Albrieux C, Scheller HV, Merchant S, Jensen PE., Proc. Natl. Acad. Sci. U.S.A. 100(26), 2003
PMID: 14673103
Divergent light-, ascorbate-, and oxidative stress-dependent regulation of expression of the peroxiredoxin gene family in Arabidopsis.
Horling F, Lamkemeyer P, Konig J, Finkemeier I, Kandlbinder A, Baier M, Dietz KJ., Plant Physiol. 131(1), 2003
PMID: 12529539
Thioredoxin and thioredoxin reductase.
Holmgren A, Bjornstedt M., Meth. Enzymol. 252(), 1995
PMID: 7476354
Molecular basis for semidominance of missense mutations in the XANTHA-H (42-kDa) subunit of magnesium chelatase.
Hansson A, Kannangara CG, von Wettstein D, Hansson M., Proc. Natl. Acad. Sci. U.S.A. 96(4), 1999
PMID: 9990095
A new method for isolating physiologically active Mg-protoporphyrin monomethyl ester, the substrate of the cyclase enzyme of the chlorophyll biosynthetic pathway.
Gough SP, Rzeznicka K, Peterson Wulff R, Francisco Jda C, Hansson A, Jensen PE, Hansson M., Plant Physiol. Biochem. 45(12), 2007
PMID: 17949988
Chlorophyll Biosynthesis.
Von Wettstein D, Gough S, Kannangara CG., Plant Cell 7(7), 1995
PMID: 12242396
Membrane-bound diiron carboxylate proteins.
Berthold DA, Stenmark P., Annu Rev Plant Biol 54(), 2003
PMID: 14503001
Xantha-l encodes a membrane subunit of the aerobic Mg-protoporphyrin IX monomethyl ester cyclase involved in chlorophyll biosynthesis.
Rzeznicka K, Walker CJ, Westergren T, Kannangara CG, von Wettstein D, Merchant S, Gough SP, Hansson M., Proc. Natl. Acad. Sci. U.S.A. 102(16), 2005
PMID: 15824317
Functional analysis and expression characteristics of chloroplastic Prx IIE
Gama F, Brehelin C, Gelhaye E, Meyer Y, Jacquot JP, Rey P, Rouhier N., Physiol Plant 133(3), 2008
PMID: IND44069763
Reactive oxygen gene network of plants.
Mittler R, Vanderauwera S, Gollery M, Van Breusegem F., Trends Plant Sci. 9(10), 2004
PMID: 15465684

AUTHOR UNKNOWN, 0
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 18625226
PubMed | Europe PMC

Suchen in

Google Scholar