Redox regulation and overreduction control in the photosynthesizing cell: Complexity in redox regulatory networks

Oelze M-L, Kandlbinder A, Dietz K-J (2008)
BIOCHIMICA ET BIOPHYSICA ACTA-GENERAL SUBJECTS 1780(11): 1261-1272.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Abstract / Bemerkung
Regulation of the photosynthetic apparatus between efficient energy conversion at low light and avoidance of overreduction and damage development at excess light resembles dangerous navigating between Scylla and Charybdis. Photosynthesis is a high rate redox metabolic pathway that generates redox intermediates with extreme redox potentials and eventually reactive oxygen species and oxidative stress. Therefore it is not surprising that the states of defined redox reactions in the chloroplast provide the predominant information and thus directly or indirectly the decisive signals for the multilevel control of cell activities in the chloroplast, cytoplasm, mitochondrion and nucleus. This review elaborates on the diversity of photosynthesis-derived redox signals such as the plastoquinone and thiol redox state that regulate and coordinate light use efficiency, electron transport activity, metabolic reactions, gene transcription and translation not only in the chloroplast but through retrograde signaling also essentially in all other cell compartments. The synergistic and antagonistic interrelations between the redox-dependent signaling pathways and their interactions with other signals such as abscisic acid and tetrapyrol intermediates constitute a redundant and probably buffered regulatory network to optimize performance of photosynthesis on the cellular and whole leaf level. (C) 2008 Elsevier B.V. All rights reserved.
Erscheinungsjahr
Zeitschriftentitel
BIOCHIMICA ET BIOPHYSICA ACTA-GENERAL SUBJECTS
Band
1780
Ausgabe
11
Seite(n)
1261-1272
ISSN
PUB-ID

Zitieren

Oelze M-L, Kandlbinder A, Dietz K-J. Redox regulation and overreduction control in the photosynthesizing cell: Complexity in redox regulatory networks. BIOCHIMICA ET BIOPHYSICA ACTA-GENERAL SUBJECTS. 2008;1780(11):1261-1272.
Oelze, M. - L., Kandlbinder, A., & Dietz, K. - J. (2008). Redox regulation and overreduction control in the photosynthesizing cell: Complexity in redox regulatory networks. BIOCHIMICA ET BIOPHYSICA ACTA-GENERAL SUBJECTS, 1780(11), 1261-1272. doi:10.1016/j.bbagen.2008.03.015
Oelze, M. - L., Kandlbinder, A., and Dietz, K. - J. (2008). Redox regulation and overreduction control in the photosynthesizing cell: Complexity in redox regulatory networks. BIOCHIMICA ET BIOPHYSICA ACTA-GENERAL SUBJECTS 1780, 1261-1272.
Oelze, M.-L., Kandlbinder, A., & Dietz, K.-J., 2008. Redox regulation and overreduction control in the photosynthesizing cell: Complexity in redox regulatory networks. BIOCHIMICA ET BIOPHYSICA ACTA-GENERAL SUBJECTS, 1780(11), p 1261-1272.
M.-L. Oelze, A. Kandlbinder, and K.-J. Dietz, “Redox regulation and overreduction control in the photosynthesizing cell: Complexity in redox regulatory networks”, BIOCHIMICA ET BIOPHYSICA ACTA-GENERAL SUBJECTS, vol. 1780, 2008, pp. 1261-1272.
Oelze, M.-L., Kandlbinder, A., Dietz, K.-J.: Redox regulation and overreduction control in the photosynthesizing cell: Complexity in redox regulatory networks. BIOCHIMICA ET BIOPHYSICA ACTA-GENERAL SUBJECTS. 1780, 1261-1272 (2008).
Oelze, Marie-Luise, Kandlbinder, Andrea, and Dietz, Karl-Josef. “Redox regulation and overreduction control in the photosynthesizing cell: Complexity in redox regulatory networks”. BIOCHIMICA ET BIOPHYSICA ACTA-GENERAL SUBJECTS 1780.11 (2008): 1261-1272.

32 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Mitochondria Are Important Determinants of the Aging of Seeds.
Ratajczak E, Małecka A, Ciereszko I, Staszak AM., Int J Mol Sci 20(7), 2019
PMID: 30925807
Redox and Reactive Oxygen Species Network in Acclimation for Salinity Tolerance in Sugar Beet.
Hossain MS, ElSayed AI, Moore M, Dietz KJ., J Exp Bot 68(5), 2017
PMID: 28338762
Ferredoxin:NADP(H) Oxidoreductase Abundance and Location Influences Redox Poise and Stress Tolerance.
Kozuleva M, Goss T, Twachtmann M, Rudi K, Trapka J, Selinski J, Ivanov B, Garapati P, Steinhoff HJ, Hase T, Scheibe R, Klare JP, Hanke GT., Plant Physiol 172(3), 2016
PMID: 27634426
Dinitrogenase-Driven Photobiological Hydrogen Production Combats Oxidative Stress in Cyanothece sp. Strain ATCC 51142.
Sadler NC, Bernstein HC, Melnicki MR, Charania MA, Hill EA, Anderson LN, Monroe ME, Smith RD, Beliaev AS, Wright AT., Appl Environ Microbiol 82(24), 2016
PMID: 27742679
Impacts of high ATP supply from chloroplasts and mitochondria on the leaf metabolism of Arabidopsis thaliana.
Liang C, Zhang Y, Cheng S, Osorio S, Sun Y, Fernie AR, Cheung CY, Lim BL., Front Plant Sci 6(), 2015
PMID: 26579168
Light acclimation in diatoms: from phenomenology to mechanisms.
Wilhelm C, Jungandreas A, Jakob T, Goss R., Mar Genomics 16(), 2014
PMID: 24412570
System responses to equal doses of photosynthetically usable radiation of blue, green, and red light in the marine diatom Phaeodactylum tricornutum.
Valle KC, Nymark M, Aamot I, Hancke K, Winge P, Andresen K, Johnsen G, Brembu T, Bones AM., PLoS One 9(12), 2014
PMID: 25470731
Sugarcane genes differentially expressed in response to Puccinia melanocephala infection: identification and transcript profiling.
Oloriz MI, Gil V, Rojas L, Portal O, Izquierdo Y, Jiménez E, Höfte M., Plant Cell Rep 31(5), 2012
PMID: 22212461
Purification and characterization of ZmRIP1, a novel reductant-inhibited protein tyrosine phosphatase from maize.
Li B, Zhao Y, Liang L, Ren H, Xing Y, Chen L, Sun M, Wang Y, Han Y, Jia H, Huang C, Wu Z, Jia W., Plant Physiol 159(2), 2012
PMID: 22529284
Thylakoid redox signals are integrated into organellar-gene-expression-dependent retrograde signaling in the prors1-1 mutant.
Tadini L, Romani I, Pribil M, Jahns P, Leister D, Pesaresi P., Front Plant Sci 3(), 2012
PMID: 23293642
The chloroplastic 2-oxoglutarate/malate transporter has dual function as the malate valve and in carbon/nitrogen metabolism.
Kinoshita H, Nagasaki J, Yoshikawa N, Yamamoto A, Takito S, Kawasaki M, Sugiyama T, Miyake H, Weber APM, Taniguchi M., Plant J 65(1), 2011
PMID: 21175886
Abiotic stress and the plant circadian clock.
Sanchez A, Shin J, Davis SJ., Plant Signal Behav 6(2), 2011
PMID: 21325898
The avoidance and aggregative movements of mesophyll chloroplasts in C(4) monocots in response to blue light and abscisic acid.
Maai E, Shimada S, Yamada M, Sugiyama T, Miyake H, Taniguchi M., J Exp Bot 62(9), 2011
PMID: 21339388
Peroxiredoxins in plants and cyanobacteria.
Dietz KJ., Antioxid Redox Signal 15(4), 2011
PMID: 21194355
The Plastid Outer Envelope - A Highly Dynamic Interface between Plastid and Cytoplasm.
Breuers FK, Bräutigam A, Weber AP., Front Plant Sci 2(), 2011
PMID: 22629266
Subcellular compartmentation of glutathione in dicotyledonous plants.
Zechmann B, Müller M., Protoplasma 246(1-4), 2010
PMID: 20186447
The PedR transcriptional regulator interacts with thioredoxin to connect photosynthesis with gene expression in cyanobacteria.
Horiuchi M, Nakamura K, Kojima K, Nishiyama Y, Hatakeyama W, Hisabori T, Hihara Y., Biochem J 431(1), 2010
PMID: 20662766
Sensing and responding to excess light.
Li Z, Wakao S, Fischer BB, Niyogi KK., Annu Rev Plant Biol 60(), 2009
PMID: 19575582
PGRL1 participates in iron-induced remodeling of the photosynthetic apparatus and in energy metabolism in Chlamydomonas reinhardtii.
Petroutsos D, Terauchi AM, Busch A, Hirschmann I, Merchant SS, Finazzi G, Hippler M., J Biol Chem 284(47), 2009
PMID: 19783661

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 18439433
PubMed | Europe PMC

Suchen in

Google Scholar