An Inverse Boundary Value Problem for the Inhomogeneous Porous Medium Equation
Cârstea CI, Ghosh T, Nakamura G (2025)
SIAM Journal on Applied Mathematics 85(1): 278-293.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Cârstea, Cătălin I.;
Ghosh, TuhinUniBi;
Nakamura, Gen
Einrichtung
Abstract / Bemerkung
In this paper we establish uniqueness in the inverse boundary value problem for the porous medium equation & varepsilon;partial derivative(t)u-del & sdot;(gamma del u(m))=0, which is a degenerate parabolic type quasilinear PDE. We assume that m>1, which is sometimes referred to as the slow diffusion case. Under these assumptions we show that the corresponding Dirichlet-to-Neumann map determines the two coefficients & varepsilon; and gamma. Our approach relies on using a Laplace transform to turn the original equation into a coupled family of nonlinear elliptic equations, indexed by the frequency parameter (1/h in our definition) of the transform. A careful analysis of the asymptotic expansion in powers of h, as h ->infinity, of the solutions to the transformed equation, with special boundary data, allows us to obtain sufficient information to deduce the uniqueness result.
Stichworte
inverse problems;
porous medium equation;
degenerate parabolic equations
Erscheinungsjahr
2025
Zeitschriftentitel
SIAM Journal on Applied Mathematics
Band
85
Ausgabe
1
Seite(n)
278-293
ISSN
0036-1399
eISSN
1095-712X
Page URI
https://pub.uni-bielefeld.de/record/3002516
Zitieren
Cârstea CI, Ghosh T, Nakamura G. An Inverse Boundary Value Problem for the Inhomogeneous Porous Medium Equation. SIAM Journal on Applied Mathematics. 2025;85(1):278-293.
Cârstea , C. I., Ghosh, T., & Nakamura, G. (2025). An Inverse Boundary Value Problem for the Inhomogeneous Porous Medium Equation. SIAM Journal on Applied Mathematics, 85(1), 278-293. https://doi.org/10.1137/23M1623197
Cârstea , Cătălin I., Ghosh, Tuhin, and Nakamura, Gen. 2025. “An Inverse Boundary Value Problem for the Inhomogeneous Porous Medium Equation”. SIAM Journal on Applied Mathematics 85 (1): 278-293.
Cârstea , C. I., Ghosh, T., and Nakamura, G. (2025). An Inverse Boundary Value Problem for the Inhomogeneous Porous Medium Equation. SIAM Journal on Applied Mathematics 85, 278-293.
Cârstea , C.I., Ghosh, T., & Nakamura, G., 2025. An Inverse Boundary Value Problem for the Inhomogeneous Porous Medium Equation. SIAM Journal on Applied Mathematics, 85(1), p 278-293.
C.I. Cârstea, T. Ghosh, and G. Nakamura, “An Inverse Boundary Value Problem for the Inhomogeneous Porous Medium Equation”, SIAM Journal on Applied Mathematics, vol. 85, 2025, pp. 278-293.
Cârstea , C.I., Ghosh, T., Nakamura, G.: An Inverse Boundary Value Problem for the Inhomogeneous Porous Medium Equation. SIAM Journal on Applied Mathematics. 85, 278-293 (2025).
Cârstea , Cătălin I., Ghosh, Tuhin, and Nakamura, Gen. “An Inverse Boundary Value Problem for the Inhomogeneous Porous Medium Equation”. SIAM Journal on Applied Mathematics 85.1 (2025): 278-293.
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Suchen in