The probability of almost all eigenvalues being real for the elliptic real Ginibre ensemble
Akemann G, Byun S-S, Lee Y-W (2025)
arXiv:2503.18310.
Preprint
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Akemann, GernotUniBi;
Byun, Sung-Soo;
Lee, Yong-Woo
Einrichtung
Abstract / Bemerkung
We investigate real eigenvalues of real elliptic Ginibre matrices of size
$n$, indexed by the asymmetric parameter $\tau \in [0,1]$. In both the strongly
and weakly non-Hermitian regimes, where $\tau \in [0,1)$ is fixed or
$1-\tau=O(1/n)$, respectively, we derive the asymptotic expansion of the
probability $p_{n,n-2l}$ that all but a finite number $2l$ of eigenvalues are
real. In particular, we show that the expansion is of the form $$\begin{align*}
\log p_{n, n-2l} = \begin{cases} a_1 n^2 +a_2 n + a_3 \log n +O(1) &\text{at
strong non-Hermiticity}, \\ b_1 n +b_2 \log n + b_3 +o(1) &\text{at weak
non-Hermiticity}, \end{cases} \end{align*}$$ and we determine all coefficients
explicitly. Furthermore, in the special case where $l=1$, we derive the
full-order expansions. For the proofs, we employ distinct methods for the
strongly and weakly non-Hermitian regimes. In the former case, we utilise
potential-theoretic techniques to analyse the free energy of elliptic Ginibre
matrices conditioned to have $n-2l$ real eigenvalues, together with strong
Szeg\H{o} limit theorems. In the latter case, we utilise the skew-orthogonal
polynomial formalism and the asymptotic behaviour of the Hermite polynomials.
Erscheinungsjahr
2025
Zeitschriftentitel
arXiv:2503.18310
Seite(n)
30
Page URI
https://pub.uni-bielefeld.de/record/3002465
Zitieren
Akemann G, Byun S-S, Lee Y-W. The probability of almost all eigenvalues being real for the elliptic real Ginibre ensemble. arXiv:2503.18310. 2025.
Akemann, G., Byun, S. - S., & Lee, Y. - W. (2025). The probability of almost all eigenvalues being real for the elliptic real Ginibre ensemble. arXiv:2503.18310
Akemann, Gernot, Byun, Sung-Soo, and Lee, Yong-Woo. 2025. “The probability of almost all eigenvalues being real for the elliptic real Ginibre ensemble”. arXiv:2503.18310.
Akemann, G., Byun, S. - S., and Lee, Y. - W. (2025). The probability of almost all eigenvalues being real for the elliptic real Ginibre ensemble. arXiv:2503.18310.
Akemann, G., Byun, S.-S., & Lee, Y.-W., 2025. The probability of almost all eigenvalues being real for the elliptic real Ginibre ensemble. arXiv:2503.18310.
G. Akemann, S.-S. Byun, and Y.-W. Lee, “The probability of almost all eigenvalues being real for the elliptic real Ginibre ensemble”, arXiv:2503.18310, 2025.
Akemann, G., Byun, S.-S., Lee, Y.-W.: The probability of almost all eigenvalues being real for the elliptic real Ginibre ensemble. arXiv:2503.18310. (2025).
Akemann, Gernot, Byun, Sung-Soo, and Lee, Yong-Woo. “The probability of almost all eigenvalues being real for the elliptic real Ginibre ensemble”. arXiv:2503.18310 (2025).