Two transitions in complex eigenvalue statistics: Hermiticity and integrability breaking

Akemann G, Balducci F, Chenu A, Päßler P, Roccati F, Shir R (2025)
Physical Review Research 7(1): 013098.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA 2.14 MB
Autor*in
Akemann, GernotUniBi; Balducci, Federico; Chenu, Aurélia; Päßler, PatriciaUniBi; Roccati, Federico; Shir, Ruth
Abstract / Bemerkung
Open quantum systems have complex energy eigenvalues which are expected to follow non-Hermitian random matrix statistics, when chaotic, or two-dimensional (2d) Poisson statistics, when integrable. We investigate the spectral properties of a many-body quantum spin chain, i.e., the Hermitian XXZ Heisenberg model with imaginary disorder. Its rich complex eigenvalue statistics is found to separately break both Hermiticity and integrability at different scales of the disorder strength. With no disorder, the system is integrable and Hermitian, with spectral statistics corresponding to the 1d Poisson point process. At very small disorder, we find a transition from 1d Poisson statistics to an effective 𝐷-dimensional Poisson point process, showing Hermiticity breaking. At intermediate disorder, we find integrability breaking, as inferred from the statistics matching that of non-Hermitian complex symmetric random matrices in class AI†. For large disorder, as the spins align, we recover the expected integrability (now in the non-Hermitian setup), indicated by 2d Poisson statistics. These conclusions are based on fitting the spin-chain data of numerically generated nearest- and next-to-nearest-neighbor spacing distributions to an effective 2d Coulomb gas description at inverse temperature 𝛽. We confirm that such an effective description of random matrices also applies in classes AI† and AII† up to next-to-nearest-neighbor spacings.
Erscheinungsjahr
2025
Zeitschriftentitel
Physical Review Research
Band
7
Ausgabe
1
Art.-Nr.
013098
eISSN
2643-1564
Page URI
https://pub.uni-bielefeld.de/record/3002461

Zitieren

Akemann G, Balducci F, Chenu A, Päßler P, Roccati F, Shir R. Two transitions in complex eigenvalue statistics: Hermiticity and integrability breaking. Physical Review Research. 2025;7(1): 013098.
Akemann, G., Balducci, F., Chenu, A., Päßler, P., Roccati, F., & Shir, R. (2025). Two transitions in complex eigenvalue statistics: Hermiticity and integrability breaking. Physical Review Research, 7(1), 013098. https://doi.org/10.1103/PhysRevResearch.7.013098
Akemann, Gernot, Balducci, Federico, Chenu, Aurélia, Päßler, Patricia, Roccati, Federico, and Shir, Ruth. 2025. “Two transitions in complex eigenvalue statistics: Hermiticity and integrability breaking”. Physical Review Research 7 (1): 013098.
Akemann, G., Balducci, F., Chenu, A., Päßler, P., Roccati, F., and Shir, R. (2025). Two transitions in complex eigenvalue statistics: Hermiticity and integrability breaking. Physical Review Research 7:013098.
Akemann, G., et al., 2025. Two transitions in complex eigenvalue statistics: Hermiticity and integrability breaking. Physical Review Research, 7(1): 013098.
G. Akemann, et al., “Two transitions in complex eigenvalue statistics: Hermiticity and integrability breaking”, Physical Review Research, vol. 7, 2025, : 013098.
Akemann, G., Balducci, F., Chenu, A., Päßler, P., Roccati, F., Shir, R.: Two transitions in complex eigenvalue statistics: Hermiticity and integrability breaking. Physical Review Research. 7, : 013098 (2025).
Akemann, Gernot, Balducci, Federico, Chenu, Aurélia, Päßler, Patricia, Roccati, Federico, and Shir, Ruth. “Two transitions in complex eigenvalue statistics: Hermiticity and integrability breaking”. Physical Review Research 7.1 (2025): 013098.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung 4.0 International Public License (CC-BY 4.0):
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2025-04-11T08:00:32Z
MD5 Prüfsumme
10440bf2ec8432e2aa4cbc8d3d24c4d2


Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Suchen in

Google Scholar