Algebraic rates of stability for front-type modulated waves in Ginzburg-Landau equations
Beyn W-J, Döding C (2025)
Journal of Evolution Equations 25(2): 31.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download

Autor*in
Beyn, Wolf-JürgenUniBi;
Döding, Christian
Einrichtung
Abstract / Bemerkung
We consider the stability of front-type modulated waves in the complex Ginzburg–Landau equation (CGL). The waves occur in the bistable regime (e.g., of the quintic CGL) and connect the zero state to a spatially homogenous state oscillating in time. For initial perturbations that decay at a certain algebraic rate, we prove convergence to the wave with asymptotic phase. The convergence holds in algebraically weighted Sobolev norms and with an algebraic rate in time, where the asymptotic phase is approached by one order less than the profile. On the technical side, we use the theory of exponential trichotomies to separate the spatial modes into growing, weakly decaying, and strongly decaying ones. This allows us to derive resolvent and semigroup estimates in weighted Sobolev norms and to close the argument with a Gronwall lemma involving algebraic weights.
Stichworte
Front-type modulated waves;
Nonlinear stability;
Ginzburg-Landau equation;
Equivariance;
Essential spectrum
Erscheinungsjahr
2025
Zeitschriftentitel
Journal of Evolution Equations
Band
25
Ausgabe
2
Art.-Nr.
31
Urheberrecht / Lizenzen
ISSN
1424-3199
eISSN
1424-3202
Page URI
https://pub.uni-bielefeld.de/record/3001162
Zitieren
Beyn W-J, Döding C. Algebraic rates of stability for front-type modulated waves in Ginzburg-Landau equations. Journal of Evolution Equations. 2025;25(2): 31.
Beyn, W. - J., & Döding, C. (2025). Algebraic rates of stability for front-type modulated waves in Ginzburg-Landau equations. Journal of Evolution Equations, 25(2), 31. https://doi.org/10.1007/s00028-025-01058-w
Beyn, Wolf-Jürgen, and Döding, Christian. 2025. “Algebraic rates of stability for front-type modulated waves in Ginzburg-Landau equations”. Journal of Evolution Equations 25 (2): 31.
Beyn, W. - J., and Döding, C. (2025). Algebraic rates of stability for front-type modulated waves in Ginzburg-Landau equations. Journal of Evolution Equations 25:31.
Beyn, W.-J., & Döding, C., 2025. Algebraic rates of stability for front-type modulated waves in Ginzburg-Landau equations. Journal of Evolution Equations, 25(2): 31.
W.-J. Beyn and C. Döding, “Algebraic rates of stability for front-type modulated waves in Ginzburg-Landau equations”, Journal of Evolution Equations, vol. 25, 2025, : 31.
Beyn, W.-J., Döding, C.: Algebraic rates of stability for front-type modulated waves in Ginzburg-Landau equations. Journal of Evolution Equations. 25, : 31 (2025).
Beyn, Wolf-Jürgen, and Döding, Christian. “Algebraic rates of stability for front-type modulated waves in Ginzburg-Landau equations”. Journal of Evolution Equations 25.2 (2025): 31.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung 4.0 International Public License (CC-BY 4.0):
Volltext(e)
Name
s00028-025-01058-w.pdf
991.19 KB
Access Level

Zuletzt Hochgeladen
2025-03-14T08:21:57Z
MD5 Prüfsumme
7fe096204ce2e650c622a6b40ac22972
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Suchen in