Global well-posedness of the cubic nonlinear Schrödinger equation on $\mathbb{T}^{2}$
Herr S, Kwak B (2025) .
Preprint | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Herr, SebastianUniBi
;
Kwak, Beomjong

Einrichtung
Abstract / Bemerkung
We prove global well-posedness for the cubic nonlinear Schr\"odinger equation
for periodic initial data in the mass-critical dimension $d=2$ for initial data
of arbitrary size in the defocusing case and data below the ground state
threshold in the focusing case. The result is based on a new inverse Strichartz
inequality, which is proved by using incidence geometry and additive
combinatorics, in particular the inverse theorems for Gowers uniformity norms
by Green-Tao-Ziegler. This allows to transfer the analogous results of Dodson
for the non-periodic mass-critical NLS to the periodic setting. In addition, we
construct an approximate periodic solution which implies sharpness of the
results.
Erscheinungsjahr
2025
Page URI
https://pub.uni-bielefeld.de/record/3000992
Zitieren
Herr S, Kwak B. Global well-posedness of the cubic nonlinear Schrödinger equation on $\mathbb{T}^{2}$. 2025.
Herr, S., & Kwak, B. (2025). Global well-posedness of the cubic nonlinear Schrödinger equation on $\mathbb{T}^{2}$
Herr, Sebastian, and Kwak, Beomjong. 2025. “Global well-posedness of the cubic nonlinear Schrödinger equation on $\mathbb{T}^{2}$”.
Herr, S., and Kwak, B. (2025). Global well-posedness of the cubic nonlinear Schrödinger equation on $\mathbb{T}^{2}$.
Herr, S., & Kwak, B., 2025. Global well-posedness of the cubic nonlinear Schrödinger equation on $\mathbb{T}^{2}$.
S. Herr and B. Kwak, “Global well-posedness of the cubic nonlinear Schrödinger equation on $\mathbb{T}^{2}$”, 2025.
Herr, S., Kwak, B.: Global well-posedness of the cubic nonlinear Schrödinger equation on $\mathbb{T}^{2}$. (2025).
Herr, Sebastian, and Kwak, Beomjong. “Global well-posedness of the cubic nonlinear Schrödinger equation on $\mathbb{T}^{2}$”. (2025).