Self-normalized Sums in Free Probability Theory
Neufeld L (2024)
arXiv:2406.13601.
Preprint | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Einrichtung
Projekt
Abstract / Bemerkung
We show that the distribution of self-normalized sums of free self-adjoint random variables converges weakly to Wigner's semicircle law under appropriate conditions and estimate the rate of convergence in terms of the Kolmogorov distance. In the case of free identically distributed self-adjoint bounded random variables, we retrieve the standard rate of order $n^{−1/2}$ up to a logarithmic factor, whereas we obtain a rate of order $n^{-1/4}$ in the corresponding unbounded setting. These results provide free versions of certain self-normalized limit theorems in classical probability theory.
Erscheinungsjahr
2024
Zeitschriftentitel
arXiv:2406.13601
Seite(n)
33
Page URI
https://pub.uni-bielefeld.de/record/3000754
Zitieren
Neufeld L. Self-normalized Sums in Free Probability Theory. arXiv:2406.13601. 2024.
Neufeld, L. (2024). Self-normalized Sums in Free Probability Theory. arXiv:2406.13601. https://doi.org/10.48550/arXiv.2406.13601
Neufeld, Leonie. 2024. “Self-normalized Sums in Free Probability Theory”. arXiv:2406.13601.
Neufeld, L. (2024). Self-normalized Sums in Free Probability Theory. arXiv:2406.13601.
Neufeld, L., 2024. Self-normalized Sums in Free Probability Theory. arXiv:2406.13601.
L. Neufeld, “Self-normalized Sums in Free Probability Theory”, arXiv:2406.13601, 2024.
Neufeld, L.: Self-normalized Sums in Free Probability Theory. arXiv:2406.13601. (2024).
Neufeld, Leonie. “Self-normalized Sums in Free Probability Theory”. arXiv:2406.13601 (2024).